Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance.

[1]  I. Burton,et al.  Dereplication, residual complexity, and rational naming: the case of the Actaea triterpenes. , 2012, Journal of natural products.

[2]  J. Napolitano,et al.  The tandem of full spin analysis and qHNMR for the quality control of botanicals exemplified with Ginkgo biloba. , 2012, Journal of natural products.

[3]  S. Ignatova,et al.  Gradient elution in counter-current chromatography: a new layout for an old path. , 2011, Journal of chromatography. A.

[4]  W. Conway Counter-current chromatography: simple process and confusing terminology. , 2011, Journal of chromatography. A.

[5]  Andrew R. Johnson,et al.  Chromatographic selectivity triangles. , 2011, Journal of chromatography. A.

[6]  Jeffrey Y. Pan,et al.  Purification of high-throughput organic synthesis libraries by counter-current chromatography. , 2009, Journal of chromatography. A.

[7]  Yoo-Hwa Park,et al.  Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. , 2007, Journal of food science.

[8]  P. Fu,et al.  Ginkgo Biloba Leave Extract: Biological, Medicinal, and Toxicological Effects , 2007, Journal of environmental science and health. Part C, Environmental carcinogenesis & ecotoxicology reviews.

[9]  Cuirong Sun,et al.  Two-dimensional counter-current chromatography for the preparative separation of prenylflavonoids from Artocarpus altilis. , 2007, Journal of chromatography. A.

[10]  Rui Liu,et al.  Effective two-dimensional counter-current chromatographic method for simultaneous isolation and purification of oridonin and ponicidin from the crude extract of Rabdosia rubescens. , 2007, Journal of chromatography. A.

[11]  Yun Wei,et al.  Preparative isolation of imperatorin, oxypeucedanin and isoimperatorin from traditional Chinese herb "bai zhi"Angelica dahurica (Fisch. ex Hoffm) Benth. et Hook using multidimensional high-speed counter-current chromatography. , 2006, Journal of chromatography. A.

[12]  G. Pauli,et al.  G.U.E.S.S.—A Generally Useful Estimate of Solvent Systems for CCC , 2005 .

[13]  T. A. Beek Ginkgolides and bilobalide: Their physical, chromatographic and spectroscopic properties , 2005 .

[14]  Guido F Pauli,et al.  Quantitative 1H NMR: development and potential of a method for natural products analysis. , 2005, Journal of natural products.

[15]  K. Nakanishi,et al.  Isolation of ginkgolides A, B, C, J and bilobalide from G. biloba extracts. , 2004, Phytochemistry.

[16]  K. Lee,et al.  Efficient 1H nuclear magnetic resonance method for improved quality control analyses of Ginkgo constituents. , 2004, Journal of agricultural and food chemistry.

[17]  Hyung-Kyoon Choi,et al.  Quantitative analysis of bilobalide and ginkgolides from Ginkgo biloba leaves and Ginkgo products using (1)H-NMR. , 2003, Chemical & pharmaceutical bulletin.

[18]  V B Di Marco,et al.  Mathematical functions for the representation of chromatographic peaks. , 2001, Journal of chromatography. A.

[19]  J L Wolfender,et al.  The potential of LC-NMR in phytochemical analysis. , 2001, Phytochemical analysis : PCA.

[20]  T. A. Beek,et al.  Preparative isolation and separation procedure for ginkgolides A, B, C, and J and bilobalide , 1997 .

[21]  J. Nuzillard,et al.  Nuclear magnetic resonance monitoring of centrifugal partition chromatography in pH-zone-refining mode , 1997 .

[22]  J. Wolfender,et al.  Strategy in the search for new bioactive plant constituents , 1997 .

[23]  S Walsh,et al.  Non-linear curve fitting using Microsoft Excel solver. , 1995, Talanta.

[24]  T. V. van Beek,et al.  Quantitation of bilobalide and ginkgolides A, B, C and J by means of nuclear magnetic resonance spectroscopy. , 1993 .

[25]  P. Mauri,et al.  Analysis of terpenes fromGinkgo biloba L. extracts by reversed phase high-performance liquid chromatography , 1990 .

[26]  R. Anton,et al.  Analysis of terpenes from ginkgo biloba L. by high-performance liquid chromatography , 1983 .