Caught in the Act: A Metal-rich High-velocity Cloud in the Inner Galaxy

We characterize the chemical and physical conditions in an outflowing high-velocity cloud (HVC) in the inner Galaxy. We report a supersolar metallicity of [O/H] = +0.36 ± 0.12 for the HVC at v LSR = 125.6 km s−1 toward the star HD 156359 (l = 328.°7, b = −14.°5, d = 9 kpc, z = −2.3 kpc). Using archival observations from the Far-Ultraviolet Spectroscopic Explorer (FUSE), the Hubble Space Telescope Imaging Spectrograph, and the European Southern Observatory Fiber-fed Extended Range Optical Spectrograph we measure high-velocity absorption in H i, O i, C ii, N ii, Si ii, Ca ii, Si iii, Fe iii, C iv, Si iv, N v, and O vi. We measure a low H i column density of log N(H i) = 15.54 ± 0.05 in the HVC from multiple unsaturated H i Lyman series lines in the FUSE data. We determine a low dust depletion level in the HVC from the relative strength of silicon, iron, and calcium absorption relative to oxygen, with [Si/O] = −0.33 ± 0.14, [Fe/O] = −0.30 ± 0.20, and [Ca/O] = −0.56 ± 0.16. Analysis of the high-ion absorption using collisional ionization models indicates that the hot plasma is multiphase, with the C iv and Si iv tracing 104.9 K gas and N v and O vi tracing 105.4 K gas. The cloud’s metallicity, dust content, kinematics, and close proximity to the disk are all consistent with a Galactic wind origin. As the HD 156359 line of sight probes the inner Galaxy, the HVC appears to be a young cloud caught in the act of being entrained in a multiphase Galactic outflow and driven out into the halo.

[1]  F. Lockman,et al.  Diverse metallicities of Fermi bubble clouds indicate dual origins in the disk and halo , 2022, Nature Astronomy.

[2]  B. Savage,et al.  Molecular Gas within the Milky Way's Nuclear Wind , 2021, The Astrophysical Journal Letters.

[3]  M. Miville-Deschênes,et al.  Mass, Morphing, Metallicities: The Evolution of Infalling High Velocity Clouds , 2021, 2111.00546.

[4]  T. Heckman,et al.  The H i Column Density Distribution of the Galactic Disk and Halo , 2021, The Astrophysical Journal.

[5]  P. Petitjean,et al.  Large metallicity variations in the Galactic interstellar medium , 2020, Nature.

[6]  C. Esteban,et al.  On the radial abundance gradients of nitrogen and oxygen in the inner Galactic disc , 2020, 2012.06643.

[7]  Heidelberg,et al.  Estimating distances from parallaxes. V: Geometric and photogeometric distances to 1.47 billion stars in Gaia Early Data Release 3. , 2020, 2012.05220.

[8]  A. Merloni,et al.  Detection of large-scale X-ray bubbles in the Milky Way halo , 2020, Nature.

[9]  C. Pfrommer,et al.  Interaction of a cold cloud with a hot wind: the regimes of cloud growth and destruction and the impact of magnetic fields , 2020, 2008.09118.

[10]  N. McClure–Griffiths,et al.  Cold gas in the Milky Way’s nuclear wind , 2020, Nature.

[11]  R. Benjamin,et al.  Discovery of diffuse optical emission lines from the inner Galaxy: Evidence for LI(N)ER-like gas , 2020, Science Advances.

[12]  B. Savage,et al.  Mapping Outflowing Gas in the Fermi Bubbles: A UV Absorption Survey of the Galactic Nuclear Wind , 2020, The Astrophysical Journal.

[13]  R. Benjamin,et al.  Discovery of High-velocity Hα Emission in the Direction of the Fermi Bubble , 2020, The Astrophysical Journal.

[14]  N. McClure–Griffiths,et al.  Observation of Acceleration of H i Clouds within the Fermi Bubbles , 2019, The Astrophysical Journal.

[15]  D. Balser,et al.  Metallicity Structure in the Milky Way Disk Revealed by Galactic H ii Regions , 2019, The Astrophysical Journal.

[16]  B. Groves,et al.  The Large-scale Ionization Cones in the Galaxy , 2019, The Astrophysical Journal.

[17]  S. Oh,et al.  How cold gas continuously entrains mass and momentum from a hot wind , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  R. Srianand,et al.  New synthesis models of consistent extragalactic background light over cosmic time , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  J. Bland-Hawthorn,et al.  Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs , 2018, The Astrophysical Journal.

[20]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[21]  N. McClure–Griffiths,et al.  Blowing in the Milky Way Wind: Neutral Hydrogen Clouds Tracing the Galactic Nuclear Outflow , 2018, 1802.02152.

[22]  J. Vallée A guided map to the spiral arms in the galactic disk of the Milky Way , 2017, 1711.05228.

[23]  J. Bland-Hawthorn,et al.  Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center , 2017, 1707.06942.

[24]  O. Gnat Time-dependent Cooling in Photoionized Plasma , 2017, 1706.09220.

[25]  G. Ferland,et al.  Atomic Data Revisions for Transitions Relevant to Observations of Interstellar, Circumgalactic, and Intergalactic Matter , 2017, 1701.04847.

[26]  J. Bland-Hawthorn,et al.  MAPPING THE NUCLEAR OUTFLOW OF THE MILKY WAY: STUDYING THE KINEMATICS AND SPATIAL EXTENT OF THE NORTHERN FERMI BUBBLE , 2016, 1612.01578.

[27]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[28]  B. M'enard,et al.  Calcium H & K and sodium D absorption induced by the interstellar and circumgalactic media of the Milky Way , 2015, 1503.02697.

[29]  T. Ensslin,et al.  The denoised, deconvolved, and decomposed Fermi γ-ray sky - An application of the D3PO algorithm , 2014, 1410.4562.

[30]  R. Carswell,et al.  VPFIT: Voigt profile fitting program , 2014 .

[31]  P. Bogdanovich,et al.  Atomic Data and Nuclear Data Tables , 2013 .

[32]  B. Winkel,et al.  An absorption-selected survey of neutral gas in the Milky Way halo - New results based on a large sample of Ca ii, Na i, and H i spectra towards QSOs , 2012, 1203.5603.

[33]  F. Keenan,et al.  Distance limits to intermediate- and high-velocity clouds , 2011 .

[34]  N. Badnell,et al.  Radiative transition rates and collision strengths for Si II , 2009, 0910.5425.

[35]  A. Hibbert,et al.  Weighted f-values, A-values, and line strengths for the E1 transitions among 3d6, 3d54s, and 3d54p levels of Fe III , 2009 .

[36]  Glen I. Langston,et al.  The Smith Cloud: A High-Velocity Cloud Colliding with the Milky Way , 2008, 0804.4155.

[37]  W. Dixon,et al.  The High-Velocity Gas toward Messier 5: Tracing Feedback Flows in the Inner Galaxy , 2008, 0802.0286.

[38]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in the Disk of the Milky Way , 2007, 0711.0005.

[39]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[40]  A. Sternberg,et al.  Time-dependent Ionization in Radiatively Cooling Gas , 2006, astro-ph/0608181.

[41]  C. Fischer,et al.  Relativistic energy levels, lifetimes, and transition probabilities for the sodium-like to argon-like sequences , 2006 .

[42]  S. Penton,et al.  Does the Milky Way Produce a Nuclear Galactic Wind? , 2006, astro-ph/0604323.

[43]  B. Wakker,et al.  A FUSE Survey of High-Latitude Galactic Molecular Hydrogen , 2005, astro-ph/0512444.

[44]  J. Bland-Hawthorn,et al.  Multiphase High-Velocity Clouds toward HE 0226–4110 and PG 0953+414 , 2005, astro-ph/0505299.

[45]  C. Fischer,et al.  Breit–Pauli energy levels, lifetimes, and transition probabilities for the beryllium-like to neon-like sequences☆ , 2004 .

[46]  D. York,et al.  The Deuterium-to-Hydrogen Ratio in a Low-Metallicity Cloud Falling onto the Milky Way , 2003, astro-ph/0311177.

[47]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[48]  B. Gibson,et al.  Hα Emission from High-Velocity Clouds and Their Distances , 2003 .

[49]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in and near the Galaxy , 2003 .

[50]  J. Linsky,et al.  Complex C: A Low-Metallicity, High-Velocity Cloud Plunging into the Milky Way , 2003, astro-ph/0302534.

[51]  J. Bland-Hawthorn,et al.  The Large-Scale Bipolar Wind in the Galactic Center , 2002, astro-ph/0208553.

[52]  Ivan Hubeny,et al.  A Grid of Non-LTE Line-blanketed Model Atmospheres of O-Type Stars , 2002, astro-ph/0210157.

[53]  B. Savage,et al.  Origins of the Highly Ionized Gas along the Line of Sight toward HD 116852 , 2002, astro-ph/0209566.

[54]  J. Shull,et al.  A Survey of FUSE and HST Sightlines through High-Velocity Cloud Complex C , 2002, astro-ph/0209229.

[55]  B. Savage,et al.  The Diversity of High- and Intermediate-Velocity Clouds: Complex C versus IV Arch , 2001, astro-ph/0105466.

[56]  A. Hibbert,et al.  Sextet transitions in Fe ii , 2001 .

[57]  et al,et al.  Overview of the Far Ultraviolet Spectroscopic Explorer Mission , 2000, astro-ph/0005529.

[58]  B. P. Wakker,et al.  Accretion of low-metallicity gas by the Milky Way , 1999, Nature.

[59]  J. Bland-Hawthorn,et al.  The Escape of Ionizing Photons from the Galaxy , 1998, astro-ph/9810469.

[60]  V. G. Pal’chikov Relativistic Transition Probabilities and Oscillator Strengths in Hydrogen-like Atoms , 1998 .

[61]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[62]  S. Viegas Abundances at high redshift: ionization correction factors , 1995 .

[63]  B. Savage,et al.  Probing the galactic disk and halo. 2: Hot interstellar gas toward the inner galaxy star HD 156359 , 1995 .

[64]  N. Craig,et al.  High-resolution Ca II observations of the local interstellar medium , 1993 .

[65]  K. Borkowski,et al.  Radiative magnetized thermal conduction fronts , 1990 .

[66]  D. Massa,et al.  Ultraviolet interstellar absorption toward HD 156359, a halo star at 11 kiloparsecs in the direction l = 329 deg and b = -15 deg , 1990 .

[67]  H. E. Saraph,et al.  Atomic data for opacity calculations. IX. The lithium isoelectronic sequence , 1988 .

[68]  H. Böhringer,et al.  Steady models of radiatively modified conductively driven evaporation from interstellar clouds , 1987 .

[69]  J. Bregman,et al.  The galactic fountain of high-velocity clouds. , 1980 .

[70]  P. Shapiro,et al.  Consequences of a New Hot Component of the Interstellar Medium , 1976 .

[71]  J. Silk,et al.  On the velocity dependence of the interstellar Na I/Ca II ratio. , 1974 .

[72]  George B. Field,et al.  Charge Transfer and Ionization Equilibrium in the Interstellar Medium , 1971 .

[73]  L. Spitzer,et al.  A Comparison of the Components in Interstellar Sodium and Calcium. , 1952 .

[74]  D. R. Inglis,et al.  Ionic Depression of Series Limits in One-Electron Spectra. , 1939 .