An atomic interaction‐based continuum model for computational multiscale contact mechanics

A computational multiscale contact mechanics model is presented which describes the interaction between deformable solids based on the interaction of individual atoms or molecules. The contact model is formulated in the framework of large deformation continuum mechanics and combines the approaches of molecular modelling [1] and continuum contact mechanics [2]. In the following a brief overview of the contact model is given. Further details can be found in [3], [4] and [5]. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Tongxi Yu,et al.  Mechanics of adhesion in MEMS—a review , 2003 .

[2]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[3]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[4]  Benjamin J. Glasser,et al.  Scale dependence, correlations, and fluctuations of stresses in rapid granular flows , 2001 .

[5]  P. C. Dunne Finite elements, procedures in engineering analysis , 1982 .

[6]  J. A. Greenwood,et al.  Adhesion of elastic spheres , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[9]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[10]  T. Schlick Molecular modeling and simulation , 2002 .

[11]  Ki Myung Lee,et al.  Crystallite coalescence during film growth based on improved contact mechanics adhesion models , 2004 .

[12]  Ted Belytschko,et al.  An atomistic-based finite deformation membrane for single layer crystalline films , 2002 .

[13]  Andrew Palmer Scaling Laws in Mechanics of Failure , 1995 .

[14]  Phaedon Avouris,et al.  Deformation of carbon nanotubes by surface van der Waals forces , 1998 .

[15]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[16]  Jiunn-Jong Wu Adhesive contact between a nano-scale rigid sphere and an elastic half-space , 2006 .

[17]  M. Ortiz,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[18]  Sung-San Cho,et al.  Finite element modeling of adhesive contact using molecular potential , 2004 .

[19]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[20]  R. S. Bradley,et al.  LXXIX. The cohesive force between solid surfaces and the surface energy of solids , 1932 .

[21]  J. H. Weiner,et al.  Statistical Mechanics of Elasticity , 1983 .

[22]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[23]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[24]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[25]  Tod A. Laursen,et al.  Formulation and treatment of frictional contact problems using finite elements , 1992 .

[26]  Johnson,et al.  An Adhesion Map for the Contact of Elastic Spheres , 1997, Journal of colloid and interface science.

[27]  P. Gumbsch,et al.  Atomistic modeling of mechanical behavior , 2003 .

[28]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[29]  T. I. Zohdi,et al.  An introduction to modeling and simulation of particulate flows , 2007, Computational science and engineering.

[30]  Rafael Tadmor,et al.  LETTER TO THE EDITOR: The London-van der Waals interaction energy between objects of various geometries , 2001 .

[31]  P. Eklund,et al.  Electronic properties of semiconductor nanowires. , 2008, Journal of nanoscience and nanotechnology.

[32]  B. Luan,et al.  The breakdown of continuum models for mechanical contacts , 2005, Nature.

[33]  G. Dietler,et al.  Force-distance curves by atomic force microscopy , 1999 .

[34]  Mark A. Lantz,et al.  Simultaneous force and conduction measurements in atomic force microscopy , 1997 .

[35]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[36]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[37]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[38]  Florian Theil,et al.  Validity and Failure of the Cauchy-Born Hypothesis in a Two-Dimensional Mass-Spring Lattice , 2002, J. Nonlinear Sci..

[39]  Roger A. Sauer,et al.  An atomic interaction-based continuum model for adhesive contact mechanics , 2007 .

[40]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[41]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[42]  Richard Martel,et al.  Manipulation of Individual Carbon Nanotubes and Their Interaction with Surfaces , 1998 .

[43]  Ting Zhu,et al.  Quantifying the early stages of plasticity through nanoscale experiments and simulations , 2003 .

[44]  Rodney S. Ruoff,et al.  Radial deformation of carbon nanotubes by van der Waals forces , 1993, Nature.

[45]  Peter Wriggers,et al.  Nichtlineare Finite-Element-Methoden , 2001 .

[46]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[47]  Roger A. Sauer,et al.  A contact mechanics model for quasi‐continua , 2007 .

[48]  I. L. Singer,et al.  Friction and energy dissipation at the atomic scale: A review , 1994 .

[49]  G. Zanzotto,et al.  The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals , 1996 .

[50]  Ted Belytschko,et al.  Finite element methods for the non‐linear mechanics of crystalline sheets and nanotubes , 2004 .

[51]  Dong Qian,et al.  Effect of interlayer potential on mechanical deformation of multiwalled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[52]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[53]  C Goldenberg,et al.  On the microscopic foundations of elasticity , 2002, The European physical journal. E, Soft matter.

[54]  Chung-Yuen Hui,et al.  Collapse of single-walled carbon nanotubes , 2005 .

[55]  P. Wriggers,et al.  A method for solving contact problems , 1998 .

[56]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[57]  C. Lanczos The variational principles of mechanics , 1949 .

[58]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[59]  P. Wriggers,et al.  A segment-to-segment contact strategy , 1998 .

[60]  Steven D. Kenny,et al.  Atomistic simulations of structural transformations of silicon surfaces under nanoindentation , 2004 .

[61]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[62]  A. Giannakopoulos,et al.  Discrete and continuous deformation during nanoindentation of thin films , 2000 .

[63]  J. Israelachvili Intermolecular and surface forces , 1985 .

[64]  C. Hui,et al.  Elastica solution for a nanotube formed by self-adhesion of a folded thin film , 2004 .

[65]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[66]  P. Chadwick Continuum Mechanics: Concise Theory and Problems , 1976 .

[67]  Jean Paul Thiery,et al.  Johnson-Kendall-Roberts theory applied to living cells. , 2005, Physical review letters.

[68]  Gregory J. Wagner,et al.  A multiscale projection method for the analysis of carbon nanotubes , 2004 .

[69]  J. Huetink,et al.  A geometrical-based contact algorithm using a barrier method , 2001 .

[70]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[71]  Jagota,et al.  An Intersurface Stress Tensor , 1997, Journal of colloid and interface science.

[72]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[73]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[74]  Ronald E. Miller,et al.  The Quasicontinuum Method: Overview, applications and current directions , 2002 .

[75]  M. Ortiz,et al.  An analysis of the quasicontinuum method , 2001, cond-mat/0103455.

[76]  Nigel D Goldenfeld,et al.  Crystals, Defects and Microstructures: Modeling across Scales , 2002 .

[77]  Anand Jagota,et al.  Surface formulation for molecular interactions of macroscopic bodies , 1997 .

[78]  K. Johnson Continuum mechanics modeling of adhesion and friction , 1996 .

[79]  Robert E. Rudd,et al.  Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature , 2005 .

[80]  T. Belytschko,et al.  Transition states and minimum energy pathways for the collapse of carbon nanotubes , 2006 .

[81]  David J. Benson,et al.  A single surface contact algorithm for the post-buckling analysis of shell structures , 1990 .

[82]  David B. Bogy,et al.  Head-disk interface dynamic instability due to intermolecular forces , 2003 .

[83]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[84]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[85]  J. C. Hamilton,et al.  Dislocation nucleation and defect structure during surface indentation , 1998 .

[86]  Ronald E. Miller,et al.  Atomistic simulation of nanoindentation into copper multilayers , 2005 .

[87]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[88]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[89]  Ted Belytschko,et al.  Mechanics of defects in carbon nanotubes: Atomistic and multiscale simulations , 2005 .

[90]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[91]  Dimitri D. Vvedensky,et al.  Multiscale modelling of nanostructures , 2004 .

[92]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .

[93]  YP Zhao,et al.  Effect of Work of Adhesion on Nanoindentation , 2003 .

[94]  Harold S. Park,et al.  An introduction to computational nanomechanics and materials , 2004 .

[95]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[96]  M. A. Crisfield,et al.  Re‐visiting the contact patch test , 2000 .

[97]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[98]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .