Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440.

Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds.

[1]  H. Kagamiyama,et al.  Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. , 1990, The Journal of biological chemistry.

[2]  D. R. Durham,et al.  Purification and characterization of a heme-containing amine dehydrogenase from Pseudomonas putida , 1978, Journal of bacteriology.

[3]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[4]  H. Kagamiyama,et al.  Cloning, DNA sequencing, and amino acid sequencing of catechol 1,2-dioxygenases (pyrocatechase) from Pseudomonas putida mt-2 and Pseudomonas arvilla C-1. , 1995, Archives of biochemistry and biophysics.

[5]  C. Harwood,et al.  Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. , 2002, Current opinion in microbiology.

[6]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Hawkins,et al.  Molecular organisation of the quinic acid utilization (QUT) gene cluster in Aspergillus nidulans , 1988, Molecular and General Genetics MGG.

[8]  B. Okeke,et al.  Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. , 1998, Microbiology.

[9]  R. H. Olsen,et al.  Cloning and expression of the catA and catBC gene clusters from Pseudomonas aeruginosa PAO , 1988, Journal of Bacteriology.

[10]  G. Naharro,et al.  Two different pathways are involved in the β‐oxidation of n‐alkanoic and n‐phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications , 2001, Molecular microbiology.

[11]  M. Peñalva,et al.  Characterization of a Fungal Maleylacetoacetate Isomerase Gene and Identification of Its Human Homologue* , 1998, The Journal of Biological Chemistry.

[12]  R. Jensen,et al.  PhhR, a divergently transcribed activator of the phenylalanine hydroxylase gene cluster of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[13]  D. Eulberg,et al.  Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP , 1997, Journal of bacteriology.

[14]  C. J. Duggleby,et al.  Two modes of loss of the tol function from Pseudomonas putida mt-2 , 1977, Molecular and General Genetics MGG.

[15]  D. Parke Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens , 1996, Journal of bacteriology.

[16]  K. Timmis,et al.  Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. , 1981, Gene.

[17]  K. Timmis,et al.  Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. , 1987, Science.

[18]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[19]  A. Steinbüchel,et al.  Biochemical and Genetic Analyses of Ferulic Acid Catabolism in Pseudomonas sp. Strain HR199 , 1999, Applied and Environmental Microbiology.

[20]  A. Steinbüchel,et al.  Biotechnological production of vanillin , 2001, Applied Microbiology and Biotechnology.

[21]  K. Horiike,et al.  Crystallization and properties of aromatic amine dehydrogenase from Pseudomonas sp. , 1983, Archives of biochemistry and biophysics.

[22]  J. Heider,et al.  Aerobic metabolism of phenylacetic acids in Azoarcus evansii , 2002, Archives of Microbiology.

[23]  K. Timmis,et al.  Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[24]  V. Venturi,et al.  Regulation of the p-hydroxybenzoic acid hydroxylase gene (pobA) in plant-growth-promoting Pseudomonas putida WCS358. , 2001, Microbiology.

[25]  J. Jongejan,et al.  Distribution of amine oxidases and amine dehydrogenases in bacteria grown on primary amines and characterization of the amine oxidase from Klebsiella oxytoca. , 1997, Microbiology.

[26]  R. Eaton Plasmid-Encoded Phthalate Catabolic Pathway in Arthrobacter keyseri 12B , 2001, Journal of bacteriology.

[27]  D. Mckay,et al.  Analysis of the pobA and pobR genes controlling expression of p-hydroxybenzoate hydroxylase in Azotobacter chroococcum. , 2001, Gene.

[28]  F. D. de Bruijn,et al.  Identification of a novel nutrient-deprivation-induced Sinorhizobium meliloti gene (hmgA) involved in the degradation of tyrosine. , 1999, Microbiology.

[29]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[30]  Juan L. Ramos,et al.  Efflux Pumps Involved in Toluene Tolerance in Pseudomonas putida DOT-T1E , 1998, Journal of bacteriology.

[31]  E. R. Olivera,et al.  The phenylacetyl‐CoA catabolon: a complex catabolic unit with broad biotechnological applications , 2001, Molecular microbiology.

[32]  V. de Lorenzo,et al.  The black cat/white cat principle of signal integration in bacterial promoters , 2001 .

[33]  S. Assinder,et al.  The TOL plasmids: determinants of the catabolism of toluene and the xylenes. , 1990, Advances in microbial physiology.

[34]  S. Harayama,et al.  The TOL Plasmid pWW0 xylN Gene Product fromPseudomonas putida Is Involved inm-Xylene Uptake , 2001, Journal of bacteriology.

[35]  Manor Askenazi,et al.  Genome Sequence of the Plant Pathogen and Biotechnology Agent Agrobacterium tumefaciens C58 , 2001, Science.

[36]  W. Gu,et al.  PhhC is an essential aminotransferase for aromatic amino acid catabolism in Pseudomonas aeruginosa. , 1998, Microbiology.

[37]  R. Jensen,et al.  PhhB, a Pseudomonas aeruginosa Homolog of Mammalian Pterin 4a-Carbinolamine Dehydratase/DCoH, Does Not Regulate Expression of Phenylalanine Hydroxylase at the Transcriptional Level , 1999, Journal of bacteriology.

[38]  David A. D'Argenio,et al.  The Physiological Contribution ofAcinetobacter PcaK, a Transport System That Acts upon Protocatechuate, Can Be Masked by the Overlapping Specificity of VanK , 1999, Journal of bacteriology.

[39]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[40]  C. Harwood,et al.  BenR, a XylS Homologue, Regulates Three Different Pathways of Aromatic Acid Degradation in Pseudomonas putida , 2000, Journal of bacteriology.

[41]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[42]  C. Harwood,et al.  Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate , 1994, Journal of bacteriology.

[43]  R. H. Olsen,et al.  Initial catabolism of aromatic biogenic amines by Pseudomonas aeruginosa PAO: pathway description, mapping of mutations, and cloning of essential genes , 1987, Journal of bacteriology.

[44]  J. Ramos,et al.  Species-specific repetitive extragenic palindromic (REP) sequences in Pseudomonas putida. , 2002, Nucleic acids research.

[45]  David A. D'Argenio,et al.  Genetic Analysis of a Chromosomal Region ContainingvanA and vanB, Genes Required for Conversion of Either Ferulate or Vanillate to Protocatechuate inAcinetobacter , 1999, Journal of bacteriology.

[46]  A. Steinbüchel,et al.  Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate , 1997, Journal of bacteriology.

[47]  Eduardo Díaz,et al.  The Behavior of Bacteria Designed for Biodegradation , 1994, Bio/Technology.

[48]  Ronald W. Davis,et al.  The Composite Genome of the Legume Symbiont Sinorhizobium meliloti , 2001, Science.

[49]  S. Fetzner Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions , 1998, Applied Microbiology and Biotechnology.

[50]  W. M. Ingledew,et al.  Quinate metabolism in Pseudomonas aeruginosa. , 1972, Canadian journal of microbiology.

[51]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[52]  D. Lipman,et al.  Rapid similarity searches of nucleic acid and protein data banks. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. Horikoshi,et al.  Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance , 1998, Extremophiles.

[54]  E. Neidle,et al.  Regulation of Benzoate Degradation inAcinetobacter sp. Strain ADP1 by BenM, a LysR-Type Transcriptional Activator , 1998, Journal of bacteriology.

[55]  A. Segura,et al.  Repression of Acinetobacter vanillate demethylase synthesis by VanR, a member of the GntR family of transcriptional regulators. , 2000, FEMS microbiology letters.

[56]  L. N. Ornston,et al.  Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus , 1995, Journal of bacteriology.

[57]  L. Serre,et al.  Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway. , 1999, Structure.

[58]  M. Yap,et al.  Group II intron from Pseudomonas alcaligenes NCIB 9867 (P25X): entrapment in plasmid RP4 and sequence analysis. , 1997, Microbiology.

[59]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[60]  H. Kagamiyama,et al.  Crystallization and some properties of metapyrocatechase. , 1963, Biochemical and biophysical research communications.

[61]  D. Eulberg,et al.  Characterization of a Protocatechuate Catabolic Gene Cluster from Rhodococcus opacus 1CP: Evidence for a Merged Enzyme with 4-Carboxymuconolactone-Decarboxylating and 3-Oxoadipate Enol-Lactone-Hydrolyzing Activity , 1998, Journal of bacteriology.

[62]  E. Kitsiou,et al.  Distribution of CD1A‐positive langerhans cells and lymphocyte subsets in transitional cell carcinoma of the urinary bladder. An immunohistological study on frozen sections , 1995, The Journal of pathology.

[63]  L. N. Ornston,et al.  Copyright � 1995, American Society for Microbiology Discontinuities in the Evolution of Pseudomonas putida cat Genes† , 1994 .

[64]  A. Hawkins,et al.  Genetical and biochemical aspects of quinate breakdown in the filamentous fungus Aspergillus nidulans , 1982, Biochemical Genetics.

[65]  M. A. Prieto,et al.  Biodegradation of Aromatic Compounds byEscherichia coli , 2001, Microbiology and Molecular Biology Reviews.

[66]  M. Gasson,et al.  4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL)--An enzyme of phenylpropanoid chain cleavage from Pseudomonas. , 1999, Archives of biochemistry and biophysics.

[67]  E. Díaz,et al.  Catabolism of Phenylacetic Acid in Escherichia coli , 1998, The Journal of Biological Chemistry.

[68]  P. Chapman,et al.  Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter , 1992, Journal of bacteriology.

[69]  L. N. Ornston,et al.  Cloning and Genetic Characterization of dca Genes Required for β-Oxidation of Straight-Chain Dicarboxylic Acids in Acinetobacter sp. Strain ADP1 , 2001, Applied and Environmental Microbiology.

[70]  C. Harwood,et al.  PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida , 1997, Journal of bacteriology.

[71]  Caroline S. Harwood,et al.  THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY , 1996 .

[72]  David A. D'Argenio,et al.  Bacteria Are Not What They Eat: That Is Why They Are So Diverse , 2000, Journal of bacteriology.

[73]  P Bork,et al.  Gene context conservation of a higher order than operons. , 2000, Trends in biochemical sciences.