Manticore: Efficient Framework for Scalable Secure Multiparty Computation Protocols
暂无分享,去创建一个
Jonathan Katz | Nicolas Gama | Sergiu Carpov | Iraklis Leontiadis | Mariya Georgieva | M. Mohammadi | Dimitar Jetchev | Abson Sae-Tang | Jonathan Katz | Kevin Deforth | Marius Vuille | Nicolas Gama | A. Sae-Tang | Marius Vuille | Dimitar Jetchev | Sergiu Carpov | Mariya Georgieva | Iraklis Leontiadis | Kevin Deforth | M. Mohammadi
[1] Dan Bogdanov,et al. Deploying Secure Multi-Party Computation for Financial Data Analysis - (Short Paper) , 2012, Financial Cryptography.
[2] Benny Pinkas,et al. An Efficient Secure Three-Party Sorting Protocol with an Honest Majority , 2019, IACR Cryptol. ePrint Arch..
[3] Nigel P. Smart,et al. Benchmarking Privacy Preserving Scientific Operations , 2019, IACR Cryptol. ePrint Arch..
[4] Octavian Catrina,et al. Secure Computation with Fixed-Point Numbers , 2010, Financial Cryptography.
[5] Sander Siim,et al. Combining Secret Sharing and Garbled Circuits for Efficient Private IEEE 754 Floating-Point Computations , 2015, Financial Cryptography Workshops.
[6] Donald Beaver,et al. Efficient Multiparty Protocols Using Circuit Randomization , 1991, CRYPTO.
[7] Arpita Patra,et al. ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation , 2020, IACR Cryptol. ePrint Arch..
[8] Vladimir Kolesnikov,et al. Improved Garbled Circuit: Free XOR Gates and Applications , 2008, ICALP.
[9] Martin Dietzfelbinger,et al. How Good Is Multi-Pivot Quicksort? , 2015, ACM Trans. Algorithms.
[10] Michael Naehrig,et al. CryptoNets: applying neural networks to encrypted data with high throughput and accuracy , 2016, ICML 2016.
[11] Yihua Zhang,et al. Secure Computation on Floating Point Numbers , 2013, NDSS.
[12] Payman Mohassel,et al. Practical Privacy-Preserving K-means Clustering , 2020, IACR Cryptol. ePrint Arch..
[13] Frederik Vercauteren,et al. Rabbit: Efficient Comparison for Secure Multi-Party Computation , 2021, IACR Cryptol. ePrint Arch..
[14] Haoyi Xiong,et al. SecureGBM: Secure Multi-Party Gradient Boosting , 2019, 2019 IEEE International Conference on Big Data (Big Data).
[15] Farinaz Koushanfar,et al. Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications , 2018, IACR Cryptol. ePrint Arch..
[16] Abraham Waksman,et al. A Permutation Network , 1968, JACM.
[17] David J. Wu,et al. Secure genome-wide association analysis using multiparty computation , 2018, Nature Biotechnology.
[18] Peter Rindal,et al. ABY3: A Mixed Protocol Framework for Machine Learning , 2018, IACR Cryptol. ePrint Arch..
[19] Dan Bogdanov,et al. Sharemind: A Framework for Fast Privacy-Preserving Computations , 2008, ESORICS.
[20] Nicolas Gama,et al. High-Precision Privacy-Preserving Real-Valued Function Evaluation , 2017, IACR Cryptol. ePrint Arch..
[21] Sun-Yuan Kung,et al. Privacy-preserving PCA on horizontally-partitioned data , 2017, 2017 IEEE Conference on Dependable and Secure Computing.
[22] Ivan Damgård,et al. Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..
[23] Yao Lu,et al. Oblivious Neural Network Predictions via MiniONN Transformations , 2017, IACR Cryptol. ePrint Arch..
[24] Arpita Patra,et al. BLAZE: Blazing Fast Privacy-Preserving Machine Learning , 2020, IACR Cryptol. ePrint Arch..
[25] Dan Bogdanov,et al. Domain-polymorphic language for privacy-preserving applications , 2013, PETShop '13.
[26] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[27] Marcel Keller,et al. MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer , 2016, IACR Cryptol. ePrint Arch..
[28] Robert E Goldschmidt,et al. Applications of division by convergence , 1964 .
[29] Michael Zohner,et al. ABY - A Framework for Efficient Mixed-Protocol Secure Two-Party Computation , 2015, NDSS.
[30] David Harris,et al. A taxonomy of parallel prefix networks , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.
[31] Katsumi Takahashi,et al. Practically Efficient Multi-party Sorting Protocols from Comparison Sort Algorithms , 2012, ICISC.
[32] Sameer Wagh,et al. SecureNN: 3-Party Secure Computation for Neural Network Training , 2019, Proc. Priv. Enhancing Technol..
[33] Marcel Keller,et al. Overdrive: Making SPDZ Great Again , 2018, IACR Cryptol. ePrint Arch..
[34] Payman Mohassel,et al. SecureML: A System for Scalable Privacy-Preserving Machine Learning , 2017, 2017 IEEE Symposium on Security and Privacy (SP).
[35] Marcel Keller,et al. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits , 2020, IACR Cryptol. ePrint Arch..
[36] Marcel Keller,et al. An architecture for practical actively secure MPC with dishonest majority , 2013, IACR Cryptol. ePrint Arch..
[37] Qiang Yang,et al. SecureBoost: A Lossless Federated Learning Framework , 2019, IEEE Intelligent Systems.
[38] Anantha Chandrakasan,et al. Gazelle: A Low Latency Framework for Secure Neural Network Inference , 2018, IACR Cryptol. ePrint Arch..
[39] Marcel Keller,et al. MP-SPDZ: A Versatile Framework for Multi-Party Computation , 2020, IACR Cryptol. ePrint Arch..
[40] Kristján Valur Jónsson,et al. Secure Multi-Party Sorting and Applications , 2011, IACR Cryptol. ePrint Arch..
[41] Rami G. Melhem,et al. Arbitrary Size Benes Networks , 1997, Parallel Process. Lett..