An Expert Systems Approach to Automated Maintenance for a Mars Oxygen Production System

[1]  D. R. Rushneck,et al.  The composition of the atmosphere at the surface of Mars , 1977 .

[2]  S. A. Graham,et al.  Information systems: tools for project management , 1987 .

[3]  Jerold P. Gilmore,et al.  A Redundant Strapdown Inertial Reference Unit (SIRU) , 1972 .

[4]  R. L. Ash,et al.  Autonomous oxygen production for a Mars return vehicle , 1982 .

[5]  Giorgio Rizzoni,et al.  Failure Detection Algorithms Applied to Control System Design for Improved Diagnostics and Reliability , 1988 .

[6]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[7]  N. Lance,et al.  An expert systems approach to automated fault management in a regenerative life support subsystem , 1986 .

[8]  B. Walker,et al.  Fault Detection Threshold Determination Technique Using Markov Theory , 1979 .

[9]  John J. Deyst,et al.  Maximum Likelihood Failure Detection Techniques Applied to the Shuttle RCS Jets , 1976 .

[10]  Robert L. Ash,et al.  Feasibility of rocket propellant production on Mars , 1978 .

[11]  V. Walton,et al.  Detecting Instrument Malfunctions in Control Systems , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[12]  R. Richter,et al.  Basic investigation into the production of oxygen in a solid electrolyte process , 1981 .

[13]  Jen-Kuang Huang,et al.  Elements of oxygen production systems using Martian atmosphere , 1986 .

[14]  F. A. Evans,et al.  Experimental strapdown redundant sensor inertial navigation system , 1970 .

[15]  Martin Adams,et al.  A sequential failure detection technique and its application , 1976 .

[16]  A. Willsky,et al.  Failure detection and identification , 1989 .

[17]  Milton Adams,et al.  Determination of Failure Thresholds in Hybrid Navigation , 1976, IEEE Transactions on Aerospace and Electronic Systems.