Nerpa: A Tool for Discovering Biosynthetic Gene Clusters of Bacterial Nonribosomal Peptides

Microbial natural products are a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in natural product discovery have revealed the chemical structure of several thousand NRPs. However, biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds. Here, we developed Nerpa, a computational method for the high-throughput discovery of novel BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their products. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known NRP structures, and novel molecular structures against tens of thousands of bacterial genomes. The availability of these tools can enhance our understanding of NRP synthesis and the function of their biosynthetic enzymes.

[1]  P. Pevzner,et al.  Integrating genomics and metabolomics for scalable non-ribosomal peptide discovery , 2021, Nature Communications.

[2]  Kai Blin,et al.  The antiSMASH database version 3: increased taxonomic coverage and new query features for modular enzymes , 2020, Nucleic Acids Res..

[3]  Stefan Günther,et al.  StreptomeDB 3.0: an updated compendium of streptomycetes natural products , 2020, Nucleic Acids Res..

[4]  Debasisa Mohanty,et al.  A machine learning-based method for prediction of macrocyclization patterns of polyketides and non-ribosomal peptides , 2020, Bioinform..

[5]  S. Günther,et al.  SeMPI 2.0—A Web Server for PKS and NRPS Predictions Combined with Metabolite Screening in Natural Product Databases , 2020, Metabolites.

[6]  Chad W. Johnston,et al.  Comprehensive prediction of secondary metabolite structure and biological activity from microbial genome sequences , 2020, Nature Communications.

[7]  Valérie Leclère,et al.  Norine: update of the nonribosomal peptide resource , 2019, Nucleic Acids Res..

[8]  Roger G. Linington,et al.  MIBiG 2.0: a repository for biosynthetic gene clusters of known function , 2019, Nucleic Acids Res..

[9]  Justin J. J. van der Hooft,et al.  The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery , 2019, ACS central science.

[10]  D. Oh,et al.  Characterization of the Ohmyungsamycin Biosynthetic Pathway and Generation of Derivatives with Improved Antituberculosis Activity , 2019, Biomolecules.

[11]  S. Lee,et al.  antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline , 2019, Nucleic Acids Res..

[12]  Valérie Leclère,et al.  rBAN: retro-biosynthetic analysis of nonribosomal peptides , 2019, Journal of Cheminformatics.

[13]  Liu Cao,et al.  Dereplication of microbial metabolites through database search of mass spectra , 2018, Nature Communications.

[14]  J. Sacchettini,et al.  Discovery of Antimicrobial Lipodepsipeptides Produced by a Serratia sp. within Mosquito Microbiomes , 2018, Chembiochem : a European journal of chemical biology.

[15]  Hosein Mohimani,et al.  Increased diversity of peptidic natural products revealed by modification-tolerant database search of mass spectra , 2018, Nature Microbiology.

[16]  C. Barrow,et al.  Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential , 2017, Front. Pharmacol..

[17]  Oliver Kohlbacher,et al.  SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria , 2017, Bioinform..

[18]  Debasisa Mohanty,et al.  RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links , 2017, Nucleic Acids Res..

[19]  Kai Blin,et al.  antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification , 2017, Nucleic Acids Res..

[20]  R. Süssmuth,et al.  Nonribosomal Peptide Synthesis-Principles and Prospects. , 2017, Angewandte Chemie.

[21]  Neha Garg,et al.  Dereplication of peptidic natural products through database search of mass spectra , 2016, Nature chemical biology.

[22]  Chad W. Johnston,et al.  Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. , 2016, Nature chemical biology.

[23]  Michael A. Skinnider,et al.  Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining , 2016, Proceedings of the National Academy of Sciences.

[24]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[25]  D. Ackerley Cracking the Nonribosomal Code. , 2016, Cell chemical biology.

[26]  Valérie Leclère,et al.  Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing , 2015, Nucleic Acids Res..

[27]  Gang Fu,et al.  PubChem Substance and Compound databases , 2015, Nucleic Acids Res..

[28]  L. Gram,et al.  Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea. , 2015, International journal of systematic and evolutionary microbiology.

[29]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[30]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[31]  Valérie Sopéna,et al.  Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster , 2015, Archives of Microbiology.

[32]  Rainer Breitling,et al.  Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products , 2014, PLoS Comput. Biol..

[33]  Pavel A. Pevzner,et al.  NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery , 2014, Journal of natural products.

[34]  L. Gram,et al.  Identification of Four New agr Quorum Sensing-Interfering Cyclodepsipeptides from a Marine Photobacterium , 2013, Marine drugs.

[35]  D. Oh,et al.  Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a volcanic island. , 2013, The Journal of organic chemistry.

[36]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[37]  Huajun Zheng,et al.  Bacterial biosynthesis and maturation of the didemnin anti-cancer agents. , 2012, Journal of the American Chemical Society.

[38]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[39]  R. Kolter,et al.  Structure and Biosynthesis of Amychelin, an Unusual Mixed-Ligand Siderophore from Amycolatopsis sp. AA4 , 2011, Journal of the American Chemical Society.

[40]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[41]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[42]  I. Molnár,et al.  Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. , 2009, Fungal genetics and biology : FG & B.

[43]  S. Lautru,et al.  An iterative nonribosomal peptide synthetase assembles the pyrrole-amide antibiotic congocidine in Streptomyces ambofaciens. , 2009, Chemistry & biology.

[44]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[45]  R. Borriss,et al.  More than Anticipated – Production of Antibiotics and Other Secondary Metabolites by Bacillus amyloliquefaciens FZB42 , 2008, Journal of Molecular Microbiology and Biotechnology.

[46]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[47]  Tilmann Weber,et al.  Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution , 2007, BMC Evolutionary Biology.

[48]  M. Fischbach,et al.  Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. , 2006, Chemical reviews.

[49]  N. Magarvey,et al.  Biosynthetic Pathway for Mannopeptimycins, Lipoglycopeptide Antibiotics Active against Drug-Resistant Gram-Positive Pathogens , 2006, Antimicrobial Agents and Chemotherapy.

[50]  Tilmann Weber,et al.  Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) , 2005, Nucleic acids research.

[51]  Tatiana A. Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[52]  T. Stachelhaus,et al.  Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Marahiel,et al.  Learning from Nature's Drug Factories: Nonribosomal Synthesisof MacrocyclicPeptides , 2003, Journal of bacteriology.

[54]  A. Fleming,et al.  Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. , 1980, Reviews of infectious diseases.

[55]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[56]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[57]  K. Rinehart,et al.  Seven More Microcystins from Homer Lake Cells: Application of the General Method for Structure Assignment of Peptides Containing α, β-Dehydroamino Acid Unit(s) , 1995 .

[58]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[59]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[60]  A. Fleming,et al.  On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ , 1929 .