Weil-Petersson metrics on deformation spaces

In this paper we survey various aspects of the classical wpm and its generalizations‎, ‎in particular on the moduli space of ke manifolds‎. ‎Being a natural $L^2$ metric on the parameter space of a family of complex manifolds (or holomorphic vector bundles) which admit some canonical metrics‎, ‎the wpm is well defined when the automorphism group of each fiber is discrete and the curvature of the wpm can be computed via certain integrals over each fiber‎. ‎We shall discuss the Fano case when these fibers may have continuous automorphism groups‎. ‎We also discuss the relation between the wpm on Teichm"uller spaces of K"ahler-Einstein manifolds of general type and energy of harmonic maps‎. In this paper we survey various aspects of the classical wpm and its generalizations‎, ‎in particular on the moduli space of ke manifolds‎. ‎Being a natural $L^2$ metric on the parameter space of a family of complex manifolds (or holomorphic vector bundles) which admit some canonical metrics‎, ‎the wpm is well defined when the automorphism group of each fiber is discrete and the curvature of the wpm can be computed via certain integrals over each fiber‎. ‎We shall discuss the Fano case when these fibers may have continuous automorphism groups‎. ‎We also discuss the relation between the wpm on Teichm"uller spaces of K"ahler-Einstein manifolds of general type and energy of harmonic maps‎.

[1]  V. Apostolov The K\"ahler geometry of toric manifolds , 2022, 2208.12493.

[2]  T. Brönnle Extremal Kahler Metrics on Projectivized Vector Bundles , 2015 .

[3]  Yingying Zhang Geometric Quantization of Classical Metrics on the Moduli Space of Canonical Metrics , 2014 .

[4]  Xiaofeng Sun Deformation of canonical metrics I , 2012 .

[5]  D. Toledo Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space , 2011, 1104.1786.

[6]  Gábor Székelyhidi The Kähler-Ricci flow and K-polystability , 2008, 0803.1613.

[7]  P. Wilson,et al.  Asymptotic Curvature of Moduli Spaces for Calabi–Yau Threefolds , 2009, 0902.4611.

[8]  S. Yau,et al.  Harmonic mappings and moduli spaces of Riemann surfaces , 2009 .

[9]  S. Donaldson Kahler geometry on toric manifolds, and some other manifolds with large symmetry , 2008, 0803.0985.

[10]  P. Wilson Sectional curvatures of Kähler moduli , 2003, math/0307260.

[11]  Gang Tian Extremal Kähler metrics , 2000 .

[12]  A. Tromba Dirichlet’s energy on Teichmüller’s moduli space and the Nielsen realization problem , 1996 .

[13]  G. Schumacher The Curvature of the Petersson-Weil Metric on the Moduli Space of Kähler-Einstein Manifolds , 1993 .

[14]  M. Toma,et al.  On the Petersson-Weil metric for the moduli space of Hermite-Einstein bundles and its curvature , 1992 .

[15]  P. Candelas,et al.  Rolling Among Calabi-Yau Vacua , 1990 .

[16]  A. Todorov The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I , 1989 .

[17]  Michael Wolf The Teichmüller theory of harmonic maps , 1989 .

[18]  S. Bando,et al.  Uniqueness of Einstein Kähler Metrics Modulo Connected Group Actions , 1987 .

[19]  Antonella Nannicini Weil-Petersson metric in the moduli space of compact polarized Kähler-Einstein manifolds of zero first Chern class , 1986 .

[20]  S. Wolpert Chern forms and the Riemann tensor for the moduli space of curves , 1986 .

[21]  Y. Siu Curvature of the Weil-Petersson Metric in the Moduli Space of Compact Kähler-Einstein Manifolds of Negative First Chem Class , 1986 .

[22]  N. Koiso Einstein metrics and complex structures , 1983 .

[23]  Shing-Tung Yau,et al.  Existence of incompressible minimal surfaces and the topology of three - dimensional manifolds with , 1979 .

[24]  H. Masur The extension of the Weil-Petersson metric to the boundary of Teichmuller space , 1976 .

[25]  T. Chu The Weil-Petersson metric inthe moduli space , 1976 .

[26]  L. Ahlfors Curvature properties of Teichmüller’s space , 1961 .

[27]  L. Ahlfors Some Remarks on Teichmuller's Space of Riemann Surfaces , 1961 .

[28]  A. Weil Modules des surfaces de Riemann , 1958 .