In situ observation of self-propagating high temperature syntheses of Ta5Si3, Ti5Si3 and TiB2 by proton and X-ray radiography
暂无分享,去创建一个
F. Trouw | S. Vogel | L. Smilowitz | B. Henson | A. Hurd | F. Merrill | E. Juarez-Arellano | B. Winkler | C. Morris | A. Saunders | A. Saunders | E. Haussühl | F. Mariam | T. Bernert | F. Trouw | C. Morris
[1] Sven C. Vogel,et al. gsaslanguage: a GSAS script language for automated Rietveld refinements of diffraction data , 2011 .
[2] Fesseha G. Mariam,et al. Flash radiography with 24 GeV/c protons , 2011 .
[3] D. S. Sivia,et al. Elementary Scattering Theory: For X-ray and Neutron Users , 2011 .
[4] H. Wenk,et al. Rietveld texture analysis from TOF neutron diffraction data , 2010, Powder Diffraction.
[5] C. Colinet,et al. Structural stability of intermetallic phases in the Si–Ti system. Point defects and chemical potentials in D88-Si3Ti5 phase , 2010 .
[6] A. Gash,et al. Activation energy of tantalum–tungsten oxide thermite reactions , 2010 .
[7] Branko Matović,et al. Dense and near-net-shape fabrication of Si3N4 ceramics , 2009 .
[8] H. J. Wang,et al. A comparative study on combustion synthesis of Ta–Si compounds , 2007 .
[9] W. Chen,et al. An experimental investigation on combustion synthesis of transition metal silicides V5Si3, Nb5Si3, and Ta5Si3 , 2007 .
[10] C. A. Nunes,et al. Thermal expansion of the Ti5Si3 and Ti6Si2B phases investigated by high-temperature X-ray diffraction , 2006 .
[11] D. Sen,et al. Small-angle neutron scattering investigation on pore growth in nickel-aluminide during SHS : Effect of heat removal , 2005 .
[12] C. Yeh,et al. An experimental study on Ti5Si3 formation by combustion synthesis in self-propagating mode , 2005 .
[13] B. Khina,et al. Limits of applicability of the “diffusion-controlled product growth” kinetic approach to modeling SHS , 2005 .
[14] H. Sprenger,et al. Neues Titansilicid: Ti5Si4 , 1967, Naturwissenschaften.
[15] A. Merzhanov,et al. The chemistry of self-propagating high-temperature synthesis , 2004 .
[16] A. Radulescu,et al. Small-angle neutron scattering study of volcanic rocks , 2004 .
[17] H. Wenk,et al. Texture analysis with the new HIPPO TOF diffractometer , 2003 .
[18] A. Varma,et al. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties , 2003 .
[19] S. Matthies. 20 Years WIMV, History, Experience and Contemporary Developments , 2002 .
[20] F. Hellman,et al. Long ferromagnetic correlation length in amorphous TbFe{sub 2} , 1999 .
[21] Q. Pankhurst,et al. Convenient, low energy routes to hexagonal ferrites MFe12O19(M=Sr, Ba) from SHS reactions of iron, iron oxide and MO2 in air , 1998 .
[22] R. Ortega,et al. Pseudo-C11b phase formation of titanium disilicide during the C49 to C54 transition , 1997 .
[23] Boreham,et al. Microstructural evolution of source rocks during hydrocarbon generation: A small-angle-scattering study. , 1996, Physical review. B, Condensed matter.
[24] Y. Ishizawa,et al. Preparation of TiB2 single crystals by the floating zone method , 1994 .
[25] A. G. Merzhanov,et al. Solid Flames: Discoveries, Concepts, and Horizons of Cognition , 1994 .
[26] Y. Umakoshi,et al. Anisotropy of electrical resistivity and thermal expansion of single-crystal Ti5Si3 , 1992 .
[27] V. F. Sears. Neutron scattering lengths and cross sections , 1992 .
[28] P. A. Seeger,et al. Small-angle neutron scattering at pulsed spallation sources , 1991 .
[29] Z. A. Munir,et al. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion , 1989 .
[30] C. G. Windsor,et al. Rietveld Refinement with Spallation Neutron Powder Diffraction Data , 1982 .
[31] C. Bamford,et al. Comprehensive Chemical Kinetics , 1976 .
[32] E. E. Havinga,et al. Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .
[33] A. S. Cooper. Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire , 1962 .
[34] H. Nowotny,et al. Ein Beitrag zum Dreistoff Titan-Molybdän-Bor , 1960 .
[35] H. Nowotny,et al. Das Verhalten metallreicher, hochschmelzender Silizide gegenüber Bor, Kohlenstoff, Stickstoff und Sauerstoff , 1956 .
[36] H. Nowotny,et al. Der Aufbau der Silizide M5Si3 , 1955 .