In situ observation of self-propagating high temperature syntheses of Ta5Si3, Ti5Si3 and TiB2 by proton and X-ray radiography

[1]  Sven C. Vogel,et al.  gsaslanguage: a GSAS script language for automated Rietveld refinements of diffraction data , 2011 .

[2]  Fesseha G. Mariam,et al.  Flash radiography with 24 GeV/c protons , 2011 .

[3]  D. S. Sivia,et al.  Elementary Scattering Theory: For X-ray and Neutron Users , 2011 .

[4]  H. Wenk,et al.  Rietveld texture analysis from TOF neutron diffraction data , 2010, Powder Diffraction.

[5]  C. Colinet,et al.  Structural stability of intermetallic phases in the Si–Ti system. Point defects and chemical potentials in D88-Si3Ti5 phase , 2010 .

[6]  A. Gash,et al.  Activation energy of tantalum–tungsten oxide thermite reactions , 2010 .

[7]  Branko Matović,et al.  Dense and near-net-shape fabrication of Si3N4 ceramics , 2009 .

[8]  H. J. Wang,et al.  A comparative study on combustion synthesis of Ta–Si compounds , 2007 .

[9]  W. Chen,et al.  An experimental investigation on combustion synthesis of transition metal silicides V5Si3, Nb5Si3, and Ta5Si3 , 2007 .

[10]  C. A. Nunes,et al.  Thermal expansion of the Ti5Si3 and Ti6Si2B phases investigated by high-temperature X-ray diffraction , 2006 .

[11]  D. Sen,et al.  Small-angle neutron scattering investigation on pore growth in nickel-aluminide during SHS : Effect of heat removal , 2005 .

[12]  C. Yeh,et al.  An experimental study on Ti5Si3 formation by combustion synthesis in self-propagating mode , 2005 .

[13]  B. Khina,et al.  Limits of applicability of the “diffusion-controlled product growth” kinetic approach to modeling SHS , 2005 .

[14]  H. Sprenger,et al.  Neues Titansilicid: Ti5Si4 , 1967, Naturwissenschaften.

[15]  A. Merzhanov,et al.  The chemistry of self-propagating high-temperature synthesis , 2004 .

[16]  A. Radulescu,et al.  Small-angle neutron scattering study of volcanic rocks , 2004 .

[17]  H. Wenk,et al.  Texture analysis with the new HIPPO TOF diffractometer , 2003 .

[18]  A. Varma,et al.  Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties , 2003 .

[19]  S. Matthies 20 Years WIMV, History, Experience and Contemporary Developments , 2002 .

[20]  F. Hellman,et al.  Long ferromagnetic correlation length in amorphous TbFe{sub 2} , 1999 .

[21]  Q. Pankhurst,et al.  Convenient, low energy routes to hexagonal ferrites MFe12O19(M=Sr, Ba) from SHS reactions of iron, iron oxide and MO2 in air , 1998 .

[22]  R. Ortega,et al.  Pseudo-C11b phase formation of titanium disilicide during the C49 to C54 transition , 1997 .

[23]  Boreham,et al.  Microstructural evolution of source rocks during hydrocarbon generation: A small-angle-scattering study. , 1996, Physical review. B, Condensed matter.

[24]  Y. Ishizawa,et al.  Preparation of TiB2 single crystals by the floating zone method , 1994 .

[25]  A. G. Merzhanov,et al.  Solid Flames: Discoveries, Concepts, and Horizons of Cognition , 1994 .

[26]  Y. Umakoshi,et al.  Anisotropy of electrical resistivity and thermal expansion of single-crystal Ti5Si3 , 1992 .

[27]  V. F. Sears Neutron scattering lengths and cross sections , 1992 .

[28]  P. A. Seeger,et al.  Small-angle neutron scattering at pulsed spallation sources , 1991 .

[29]  Z. A. Munir,et al.  Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion , 1989 .

[30]  C. G. Windsor,et al.  Rietveld Refinement with Spallation Neutron Powder Diffraction Data , 1982 .

[31]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[32]  E. E. Havinga,et al.  Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .

[33]  A. S. Cooper Precise lattice constants of germanium, aluminum, gallium arsenide, uranium, sulphur, quartz and sapphire , 1962 .

[34]  H. Nowotny,et al.  Ein Beitrag zum Dreistoff Titan-Molybdän-Bor , 1960 .

[35]  H. Nowotny,et al.  Das Verhalten metallreicher, hochschmelzender Silizide gegenüber Bor, Kohlenstoff, Stickstoff und Sauerstoff , 1956 .

[36]  H. Nowotny,et al.  Der Aufbau der Silizide M5Si3 , 1955 .