Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

[1]  P. Kane,et al.  Assembly and Regulation of the Yeast Vacuolar H+-ATPase , 2003, Journal of bioenergetics and biomembranes.

[2]  A. Porat,et al.  Regulation of Intra-Golgi Membrane Transport by Calcium* , 2000, The Journal of Biological Chemistry.

[3]  J. Rothman,et al.  Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP , 2000, The Journal of cell biology.

[4]  J. Luzio,et al.  The Role of Intraorganellar Ca2+In Late Endosome–Lysosome Heterotypic Fusion and in the Reformation of Lysosomes from Hybrid Organelles , 2000, The Journal of cell biology.

[5]  J. Rothman,et al.  Putative fusogenic activity of NSF is restricted to a lipid mixture whose coalescence is also triggered by other factors , 2000, EMBO Journal.

[6]  E. Neher,et al.  Inhibition of SNARE Complex Assembly Differentially Affects Kinetic Components of Exocytosis , 1999, Cell.

[7]  Z. Xu,et al.  Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Adiel Cohen,et al.  A Novel Family of Yeast Chaperons Involved in the Distribution of V-ATPase and Other Membrane Proteins* , 1999, The Journal of Biological Chemistry.

[9]  H. Schulman,et al.  Calmodulin and Protein Kinase C Increase Ca2+-stimulated Secretion by Modulating Membrane-attached Exocytic Machinery* , 1999, The Journal of Biological Chemistry.

[10]  W. Annaert,et al.  Fusion of endosomes involved in synaptic vesicle recycling. , 1999, Molecular biology of the cell.

[11]  M. Mann,et al.  Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. , 1999, Science.

[12]  A. Mayer,et al.  Intracellular membrane fusion: SNAREs only? , 1999, Current opinion in cell biology.

[13]  H. Pelham,et al.  Got1p and Sft2p: membrane proteins involved in traffic to the Golgi complex , 1999, The EMBO journal.

[14]  S. Pfeffer Transport-vesicle targeting: tethers before SNAREs , 1999, Nature Cell Biology.

[15]  Sejal M. Patel,et al.  SNARE Complex Formation Is Triggered by Ca2+ and Drives Membrane Fusion , 1999, Cell.

[16]  T. Nilsson,et al.  Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion , 1999, The EMBO journal.

[17]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.

[18]  Jens R. Coorssen,et al.  Biochemical and Functional Studies of Cortical Vesicle Fusion: The SNARE Complex and Ca2+ Sensitivity , 1998, The Journal of cell biology.

[19]  J. Skehel,et al.  Coiled Coils in Both Intracellular Vesicle and Viral Membrane Fusion , 1998, Cell.

[20]  W. Wickner,et al.  Defining the functions of trans-SNARE pairs , 1998, Nature.

[21]  A. Mayer,et al.  Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion , 1998, Nature.

[22]  M. Lindau,et al.  Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms , 1998, The EMBO journal.

[23]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[24]  H. Pelham,et al.  A Vacuolar v–t-SNARE Complex, the Predominant Form In Vivo and on Isolated Vacuoles, Is Disassembled and Activated for Docking and Fusion , 1998, The Journal of cell biology.

[25]  G. Alvarez de Toledo,et al.  The exocytotic event in chromaffin cells revealed by patch amperometry , 1997, Nature.

[26]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[27]  M. Finbow,et al.  The vacuolar H+-ATPase: a universal proton pump of eukaryotes. , 1997, The Biochemical journal.

[28]  M. Colombo,et al.  Calmodulin Regulates Endosome Fusion* , 1997, The Journal of Biological Chemistry.

[29]  A. Mayer,et al.  Docking of Yeast Vacuoles Is Catalyzed by the Ras-like GTPase Ypt7p after Symmetric Priming by Sec18p (NSF) , 1997, The Journal of cell biology.

[30]  T. Stevens,et al.  Structure, function and regulation of the vacuolar (H+)-ATPase. , 1997, Annual review of cell and developmental biology.

[31]  H. Wieczorek,et al.  Animal plasma membrane energization by chemiosmotic H+ V-ATPases. , 1997, The Journal of experimental biology.

[32]  A. Podtelejnikov,et al.  Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Jahn,et al.  16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. , 1996, Analytical biochemistry.

[34]  A. Mayer,et al.  Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles , 1996, Cell.

[35]  P. De Camilli,et al.  The V Sector of the V-ATPase, Synaptobrevin, and Synaptophysin Are Associated on Synaptic Vesicles in a Triton X-100-resistant, Freeze-thawing Sensitive, Complex (*) , 1996, The Journal of Biological Chemistry.

[36]  A. Henkel,et al.  Staurosporine blocks evoked release of FM1-43 but not acetylcholine from frog motor nerve terminals , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  J. Zimmerberg,et al.  Bending membranes to the task: structural intermediates in bilayer fusion. , 1995, Current opinion in structural biology.

[38]  W. Almers,et al.  Structure and function of fusion pores in exocytosis and ectoplasmic membrane fusion. , 1995, Current opinion in cell biology.

[39]  D. Klionsky,et al.  Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. , 1994, Journal of cell science.

[40]  D. O’Day Signal transduction during biomembrane fusion , 1993 .

[41]  Steven S. Vogel,et al.  Mechanisms of membrane fusion. , 1993, Annual review of biophysics and biomolecular structure.

[42]  D. Klionsky,et al.  Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. , 1992, The Journal of biological chemistry.

[43]  R. Scheller,et al.  Synaptic vesicle membrane proteins interact to form a multimeric complex , 1992, The Journal of cell biology.

[44]  N. Morel,et al.  Evidence for an Association of the 15‐kDa Proteolipid of Mediatophore with a 14‐kDa Polypeptide , 1991, Journal of neurochemistry.

[45]  R. Hirata,et al.  Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. , 1990, The Journal of biological chemistry.

[46]  P. Kane,et al.  Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase , 1990, Molecular and cellular biology.

[47]  N. Morel,et al.  Calcium‐Induced Desensitization of Acetylcholine Release from Synaptosomes or Proteoliposomes Equipped with Mediatophore, a Presynaptic Membrane Protein , 1987, Journal of neurochemistry.

[48]  D. Muller,et al.  Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction , 1986, Neuroscience.