Multi-period stochastic portfolio optimization: Block-separable decomposition

We consider a multiperiod stochastic programming recourse model for stock portfolio optimization. The presence of various risk and policy constraints leads to significant period-by-period linkage in the model. Furthermore, the dimensionality of the model is large due to many securities under consideration. We propose exploiting block separable recourse structure as well as methods of inducing such structure within nested L-shaped decomposition. We test the model and solution methodology with a base consisting of the Standard & Poor 100 stocks and experiment with several variants of the block separable technique. These are then compared to the standard nested period-by-period decomposition algorithm. It turns out that for financial optimization models of the kind that are discussed in this paper, significant computational efficiencies can be gained with the proposed methodology.

[1]  Horand I. Gassmann,et al.  Mslip: A computer code for the multistage stochastic linear programming problem , 1990, Math. Program..

[2]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[3]  John M. Mulvey,et al.  Chapter 15 Asset and liability allocation in a global environment , 1995, Finance.

[4]  Karl Frauendorfer,et al.  Stochastic Two-Stage Programming , 1992 .

[5]  Michael A. H. Dempster,et al.  Parallelization and aggregation ofnested Benders decomposition , 1998, Ann. Oper. Res..

[6]  C. R. Glassey Nested Decomposition and Multi-Stage Linear Programs , 1973 .

[7]  Stavros A. Zenios,et al.  A stochastic programming model for funding single premium deferred annuities , 1996, Math. Program..

[8]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[9]  William T. Ziemba,et al.  A Bank Asset and Liability Management Model , 1986, Oper. Res..

[10]  R. Rockafellar,et al.  Deviation Measures in Risk Analysis and Optimization , 2002 .

[11]  J. Mulvey,et al.  Stochastic network programming for financial planning problems , 1992 .

[12]  N. C. P. Edirisinghe,et al.  Multiperiod Portfolio Optimization with Terminal Liability: Bounds for the Convex Case , 2005, Comput. Optim. Appl..

[13]  N. C. P. Edirisinghe,et al.  Integrated risk control using stochastic programming ALM models for money management , 2008 .

[14]  William T. Ziemba,et al.  Formulation of the Russell-Yasuda Kasai Financial Planning Model , 1998, Oper. Res..

[15]  William T. Ziemba,et al.  Handbook of Asset and Liability Management - Set , 2007 .

[16]  M. Chapman Findlay,et al.  Stochastic dominance : an approach to decision-making under risk , 1978 .

[17]  N. C. P. Edirisinghe,et al.  Bound‐based approximations in multistage stochasticprogramming: Nonanticipativity aggregation , 1999, Ann. Oper. Res..

[18]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[19]  H. Konno,et al.  Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market , 1991 .

[20]  J. Birge,et al.  A multicut algorithm for two-stage stochastic linear programs , 1988 .

[21]  John M. Mulvey,et al.  An Extension of the DQA Algorithm to Convex Stochastic Programs , 1994, SIAM J. Optim..

[22]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[23]  E. Sullivan Risk Management for Hedge Fund Portfolios , 2003 .

[24]  Julia L. Higle,et al.  Stochastic Decomposition: An Algorithm for Two-Stage Linear Programs with Recourse , 1991, Math. Oper. Res..

[25]  S. Achelis Technical analysis a to z , 1994 .

[26]  Robert J. Wittrock Dual nested decomposition of staircase linear programs , 1985 .

[27]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[28]  R. Uppal,et al.  Optimal Replication of Options with Transactions Costs and Trading Restrictions , 1993, Journal of Financial and Quantitative Analysis.

[29]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[30]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[31]  H. Markowitz Portfolio Selection: Efficient Diversification of Investments , 1971 .

[32]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[33]  François V. Louveaux,et al.  Multistage stochastic programs with block-separable recourse , 1986 .

[34]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[35]  Wlodzimierz Ogryczak,et al.  From stochastic dominance to mean-risk models: Semideviations as risk measures , 1999, Eur. J. Oper. Res..

[36]  Martin R. Holmer,et al.  A stochastic programming model for money management , 1995 .

[37]  John R. Birge,et al.  A parallel implementation of the nested decomposition algorithm for multistage stochastic linear programs , 1996, Math. Program..

[38]  H. Konno,et al.  An integrated stock-bond portfolio optimization model , 1997 .