Progress in High-Dimensional Percolation and Random Graphs

Preface -- 1. Introduction and motivation -- 2. Fixing ideas: Percolation on a tree and branching random walk -- 3. Uniqueness of the phase transition -- 4. Critical exponents and the triangle condition -- 5. Proof of triangle condition -- 6. The derivation of the lace expansion via inclusion-exclusion -- 7. Diagrammatic estimates for the lace expansion -- 8. Bootstrap analysis of the lace expansion -- 9. Proof that δ = 2 and β = 1 under the triangle condition -- 10. The non-backtracking lace expansion -- 11. Further critical exponents -- 12. Kesten's incipient infinite cluster -- 13. Finite-size scaling and random graphs -- 14. Random walks on percolation clusters -- 15. Related results -- 16. Further open problems -- Bibliography.

[1]  M. Aizenman,et al.  The phase transition in a general class of Ising-type models is sharp , 1987 .

[2]  R. Hofstad Infinite Canonical Super-Brownian Motion and Scaling Limits , 2004, math/0405328.

[3]  G. B. Arous,et al.  Scaling Limit for the Ant in High‐Dimensional Labyrinths , 2016, Communications on Pure and Applied Mathematics.

[4]  R. W. Hofstad,et al.  Percolation and random graphs , 2009 .

[5]  Nicolas Broutin,et al.  Scaling limits of random graph models at criticality: Universality and the basin of attraction of the Erdős-Rényi random graph , 2014, 1411.3417.

[6]  Charles M. Newman,et al.  Percolation in half-spaces: equality of critical densities and continuity of the percolation probability , 1991 .

[7]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[8]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[9]  J. T. Chayes,et al.  The Mean Field Bound for the Order Parameter of Bernoulli Percolation , 1987 .

[10]  J. M. Hammersley,et al.  Comparison of Atom and Bond Percolation Processes , 1961 .

[11]  M. Barlow Random walks on supercritical percolation clusters , 2003, math/0302004.

[12]  L. Addario-Berry,et al.  The continuum limit of critical random graphs , 2009, 0903.4730.

[13]  Svante Janson,et al.  The Birth of the Giant Component , 1993, Random Struct. Algorithms.

[14]  Gordon Slade,et al.  Mean-Field Behaviour and the Lace Expansion , 1994 .

[15]  D. Croydon Hausdorff measure of arcs and Brownian motion on Brownian spatial trees , 2009, 0907.4260.

[16]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[17]  A. Sznitman Topics in Occupation Times and Gaussian Free Fields , 2012 .

[18]  Nicolas Broutin,et al.  The Diameter of the Minimum Spanning Tree of a Complete Graph , 2006 .

[19]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[20]  H. Duminil-Copin,et al.  A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model , 2015, Communications in Mathematical Physics.

[21]  A. Etheridge,et al.  An introduction to superprocesses , 2000 .

[22]  Charles M. Newman,et al.  The stochastic geometry of invasion percolation , 1985 .

[23]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[24]  'Ad'am Tim'ar Percolation on nonunimodular transitive graphs , 2006 .

[25]  Remco van der Hofstad,et al.  Hypercube percolation , 2012, 1201.3953.

[26]  Adrien Joseph,et al.  The component sizes of a critical random graph with given degree sequence , 2010, 1012.2352.

[27]  Recent work on chemical distance in critical percolation , 2016, 1602.00775.

[28]  Tim Hulshof The one-arm exponent for mean-field long-range percolation , 2014, 1411.3020.

[29]  David Aldous,et al.  Brownian excursions, critical random graphs and the multiplicative coalescent , 1997 .

[30]  Andrey L. Piatnitski,et al.  Quenched invariance principles for random walks on percolation clusters , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Ralph Keusch,et al.  Average Distance in a General Class of Scale-Free Networks with Underlying Geometry , 2016, ArXiv.

[32]  Augusto Teixeira,et al.  From random walk trajectories to random interlacements , 2013, Ensaios Matemáticos.

[33]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[34]  Harry Kesten,et al.  Asymptotics in High Dimensions for Percolation , 1990 .

[35]  Upper bound on the expected size of the intrinsic ball , 2010, 1006.1521.

[36]  Martin T. Barlow,et al.  Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions , 2006, math/0608164.

[37]  J. Hammersley,et al.  Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[38]  Remco van der Hofstad,et al.  Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time , 2009, 0903.4279.

[39]  H. Kesten Percolation theory for mathematicians , 1982 .

[40]  Geoffrey Grimmett,et al.  Directed percolation and random walk , 2002 .

[41]  Remco van der Hofstad,et al.  Random Graph Asymptotics on High-Dimensional Tori , 2005 .

[42]  László Babai,et al.  The growth rate of vertex-transitive planar graphs , 1997, SODA '97.

[43]  Antal A. Járai Invasion Percolation and the Incipient Infinite Cluster in 2D , 2003 .

[44]  G. Slade,et al.  Construction of the Incipient Infinite Cluster for Spread-out Oriented Percolation Above 4 + 1 Dimensions , 2002 .

[45]  Gordon Slade,et al.  The Self-Avoiding-Walk and Percolation Critical Points in High Dimensions , 1995, Combinatorics, Probability and Computing.

[46]  Heather J. Ruskin,et al.  Bond percolation processes in d dimensions , 1978 .

[47]  Invasion percolation on regular trees , 2006, math/0608132.

[48]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[49]  Allan Sly,et al.  Random walks on the random graph , 2015, 1504.01999.

[50]  A. Járai Incipient infinite percolation clusters in 2D , 2003 .

[51]  H. Duminil-Copin,et al.  A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb Z^d$ , 2015, 1502.03051.

[52]  Christian Hirsch,et al.  From heavy-tailed Boolean models to scale-free Gilbert graphs , 2014, 1411.6824.

[53]  J. L. Gall,et al.  Spatial Branching Processes, Random Snakes, and Partial Differential Equations , 1999 .

[54]  J. Spencer,et al.  EVOLUTION OF THE n-CUBE , 1979 .

[55]  Remco van der Hofstad,et al.  Heavy-tailed configuration models at criticality , 2016, 1612.00650.

[56]  S. Smirnov Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model , 2007, 0708.0039.

[57]  Gordon Slade,et al.  Self-avoiding walk in five or more dimensions I. The critical behaviour , 1992 .

[58]  Remco van der Hofstad,et al.  Novel scaling limits for critical inhomogeneous random graphs , 2009, 0909.1472.

[59]  Y. Peres,et al.  Critical Percolation on any Nonamenable Group has no Infinite Clusters , 2011 .

[60]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[61]  Yoshiharu Kohayakawa,et al.  The Evaluation of Random Subgraphs of the Cube , 1992, Random Struct. Algorithms.

[62]  Roberto H. Schonmann,et al.  Multiplicity of Phase Transitions and Mean-Field Criticality on Highly Non-Amenable Graphs , 2001 .

[63]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[64]  Uniqueness in percolation theory , 1994 .

[65]  Olle Häggström,et al.  Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously , 1999 .

[66]  I. Benjamini,et al.  Percolation Beyond $Z^d$, Many Questions And a Few Answers , 1996 .

[67]  Gordon Slade The diffusion of self-avoiding random walk in high dimensions , 1987 .

[68]  Lung-Chi Chen,et al.  Critical two-point functions for long-range statistical-mechanical models in high dimensions , 2012, 1204.1180.

[69]  Roberto H. Schonmann Mean-Field Criticality for Percolation on Planar Non-Amenable Graphs , 2002 .

[70]  David Reimer,et al.  Proof of the Van den Berg–Kesten Conjecture , 2000, Combinatorics, Probability and Computing.

[71]  G. Grimmett,et al.  Bond percolation on isoradial graphs: criticality and universality , 2012, 1204.0505.

[72]  Critical behavior of percolation and Markov fields on branching planes , 1993 .

[73]  K. Uchiyama Green's Functions for Random Walks on ZN , 1998 .

[74]  G. Hooghiemstra,et al.  Scale-free percolation , 2011, 1103.0208.

[75]  M. P. Holmes,et al.  Convergence of lattice trees to super-Brownian motion above the critical dimension , 2008 .

[76]  A. Sakai Mean-Field Critical Behavior for the Contact Process , 2001 .

[77]  Noga Alon,et al.  Percolation on finite graphs and isoperimetric inequalities , 2004 .

[78]  Wendelin Werner,et al.  CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION , 2001 .

[79]  G. Slade,et al.  Critical Two-Point Function of the 4-Dimensional Weakly Self-Avoiding Walk , 2014, 1403.7268.

[80]  Olle Häggström Problem Solving is Often a Matter of Cooking Up an Appropriate Markov Chain * , 2007 .

[81]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[82]  Raphaël Cerf,et al.  The Wulff Crystal in Ising and Percolation Models , 2006 .

[83]  Joel H. Spencer,et al.  Random Subgraphs Of Finite Graphs: III. The Phase Transition For The n-Cube , 2006, Comb..

[84]  Gordon Slade,et al.  Lattice trees and super-Brownian motion , 1997, Canadian Mathematical Bulletin.

[85]  Gordon Slade,et al.  The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion , 2000 .

[86]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[87]  Akira Sakai,et al.  Critical behavior and the limit distribution for long-range oriented percolation. I , 2007, math/0703455.

[88]  Charles M. Newman,et al.  Percolation in ∞ + 1 dimensions , 1990 .

[89]  I. Benjamini,et al.  Percolation in the hyperbolic plane , 1999, math/9912233.

[90]  W. C. V. Batenburg The dimension of the incipient infinite cluster , 2014, 1405.7606.

[91]  Jean Picard,et al.  The Lace Expansion and its Applications , 2006 .

[92]  B. Nguyen Gap exponents for percolation processes with triangle condition , 1987 .

[93]  Gordon Slade,et al.  On the upper critical dimension of lattice trees and lattice animals , 1990 .

[94]  Remco van der Hofstad,et al.  An Elementary Proof of the Hitting Time Theorem , 2008, Am. Math. Mon..

[95]  Rick Durrett,et al.  On the Growth of One Dimensional Contact Processes , 1980 .

[96]  Gordon Slade Lattice Trees, Percolation and Super-Brownian Motion , 1999 .

[97]  R. Hofstad,et al.  Random Walk on the High-Dimensional IIC , 2012, 1207.7230.

[98]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[99]  Stability of infinite clusters in supercritical percolation , 1999 .

[100]  J. Hammersley Percolation Processes: Lower Bounds for the Critical Probability , 1957 .

[101]  D. Croydon Scaling limits of stochastic processes associated with resistance forms , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[102]  János Komlós,et al.  Largest random component of ak-cube , 1982, Comb..

[103]  Remco van der Hofstad,et al.  Expansion in ${\boldsymbol{n^{-1}}}$ for Percolation Critical Values on the $n$-cube and ${\boldsymbol{{\mathbb Z}^n}}$: the First Three Terms , 2006, Comb. Probab. Comput..

[104]  A. Sapozhnikov,et al.  An Introduction to Random Interlacements , 2014 .

[105]  Takashi Hara,et al.  Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. , 2005, math-ph/0504021.

[106]  H. Kesten,et al.  Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation , 1987 .

[107]  R. Hofstad,et al.  The survival probability and $r$-point functions in high dimensions , 2011, 1110.0796.

[108]  Wendelin Werner,et al.  One-Arm Exponent for Critical 2D Percolation , 2001 .

[109]  Hal Tasaki,et al.  Hyperscaling inequalities for percolation , 1987 .

[110]  Artëm Sapozhnikovb Cycle structure of percolation on high-dimensional tori , 2014 .

[111]  G'erard Ben Arous,et al.  Scaling limit for the ant in a simple labyrinth , 2016, 1609.03980.

[112]  Yuval Peres,et al.  Critical percolation on random regular graphs , 2007, Random Struct. Algorithms.

[113]  P. Nolin,et al.  On monochromatic arm exponents for 2D critical percolation , 2009, 0906.3570.

[114]  S. Sherman,et al.  Concavity of Magnetization of an Ising Ferromagnet in a Positive External Field , 1970 .

[115]  H. Kesten,et al.  Inequalities with applications to percolation and reliability , 1985 .

[116]  R. Hofstad Spread-out oriented percolation and related models above the upper critical dimension: induction and superprocesses , 2005, Ensaios Matemáticos.

[117]  Amarjit Budhiraja,et al.  The augmented multiplicative coalescent, bounded size rules and critical dynamics of random graphs , 2014 .

[118]  Newman,et al.  Spin-glass model with dimension-dependent ground state multiplicity. , 1994, Physical review letters.

[119]  Tatyana S. Turova,et al.  Diffusion approximation for the components in critical inhomogeneous random graphs of rank 1. , 2009, Random Struct. Algorithms.

[120]  Mean-field critical behaviour for correlation length for percolation in high dimensions , 1990 .

[121]  Remco van der Hofstad,et al.  Critical behavior in inhomogeneous random graphs , 2009, Random Struct. Algorithms.

[122]  B. Simon,et al.  Infrared bounds, phase transitions and continuous symmetry breaking , 1976 .

[123]  Gordon Slade,et al.  The Scaling Limit of Lattice Trees in High Dimensions , 1998 .

[124]  R. Hofstad,et al.  High-Dimensional Incipient Infinite Clusters Revisited , 2011, 1108.4325.

[125]  Hollander den WThF,et al.  The survival probability for critical spread-out oriented percolation above 4 + 1 dimensions:II. Expansion , 2007 .

[126]  A. Sakai Hyperscaling Inequalities for the Contact Process and Oriented Percolation , 2002 .

[127]  Yoshiharu Kohayakawa,et al.  Percolation in High Dimensions , 1994, Eur. J. Comb..

[128]  Raphaël Cerf,et al.  Large deviations for three dimensional supercritical percolation , 2018, Astérisque.

[129]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[130]  R. van der Hofstad,et al.  The Incipient Infinite Cluster for High-Dimensional Unoriented Percolation , 2004 .

[131]  Weak convergence of measure-valued processes and r-point functions. , 2007, 0710.2998.

[132]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[133]  B. Simon Functional integration and quantum physics , 1979 .

[134]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[135]  Tomasz Luczak,et al.  Component Behavior Near the Critical Point of the Random Graph Process , 1990, Random Struct. Algorithms.

[136]  Michael Aizenman,et al.  On the critical behavior of the magnetization in high-dimensional Ising models , 1986 .

[137]  A. Sapozhnikov Random walks on infinite percolation clusters in models with long-range correlations , 2014, 1410.0605.

[138]  Markus Heydenreich,et al.  Structures in supercritical scale-free percolation , 2016 .

[139]  Van den Berg,et al.  On the Continuity of the Percolation Probability Function , 1984 .

[140]  Takashi Kumagai,et al.  Heat Kernel Estimates for Strongly Recurrent Random Walk on Random Media , 2008, 0806.4507.

[141]  Harry Kesten,et al.  Full Banach Mean Values on Countable groups. , 1959 .

[142]  Wei-Shih Yang,et al.  Triangle Condition for Oriented Percolation in High Dimensions , 1993 .

[143]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[144]  Remco van der Hofstad,et al.  Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models , 2000, math-ph/0011046.

[145]  Noam Berger,et al.  Transience, Recurrence and Critical Behavior¶for Long-Range Percolation , 2001 .

[146]  B. Ráth,et al.  Percolation on the stationary distributions of the voter model , 2015, 1502.01306.

[147]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[148]  The triangle and the open triangle , 2009, 0907.1959.

[149]  Charles M. Newman,et al.  Infinite clusters in percolation models , 1981 .

[150]  S. Evans Two representations of a conditioned superprocess , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[151]  Remco van der Hofstad,et al.  Maximal Clusters in Non-Critical Percolation and Related Models , 2004, math/0402169.

[152]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[153]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[154]  Nicholas C. Wormald,et al.  The mixing time of the giant component of a random graph , 2006, Random Struct. Algorithms.

[155]  B. T. Graham,et al.  Borel-type bounds for the self-avoiding walk connective constant , 2009, 0911.5163.

[156]  Remco van der Hofstad,et al.  Critical window for the configuration model: finite third moment degrees , 2016, 1605.02868.

[157]  G. Kozma,et al.  Arm exponents in high dimensional percolation , 2009, 0911.0871.

[158]  Wei-Shih Yang,et al.  Gaussian limit for critical oriented percolation in high dimensions , 1995 .

[159]  Olle Häggström,et al.  Percolation transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness , 1999 .

[160]  Oliver Riordan,et al.  The Phase Transition in the Configuration Model , 2011, Combinatorics, Probability and Computing.

[161]  Ralph Keusch,et al.  Geometric Inhomogeneous Random Graphs , 2015, Theor. Comput. Sci..

[162]  Jennifer Chayes,et al.  On the upper critical dimension of Bernoulli percolation , 1987 .

[163]  D. Aldous Minimization Algorithms and Random Walk on the $d$-Cube , 1983 .

[164]  V. Sidoravicius,et al.  Quenched invariance principles for walks on clusters of percolation or among random conductances , 2004 .

[165]  Svante Janson,et al.  On the critical probability in percolation , 2016, 1611.08549.

[166]  L. Russo On the critical percolation probabilities , 1981 .

[167]  Large Deviations of the Finite Cluster Shape for Two-Dimensional Percolation in the Hausdorff and L1 Metric , 2000 .

[168]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[169]  Remco van der Hofstad,et al.  Convergence of critical oriented percolation to super-Brownian motion above 4+1 dimensions , 2003 .

[170]  Thomas Spencer,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .

[171]  Asaf Nachmias,et al.  Unlacing hypercube percolation: a survey , 2013 .

[172]  G. Grimmett,et al.  The Critical Contact Process Dies Out , 1990 .

[173]  L. Russo A note on percolation , 1978 .

[174]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[175]  Jack F. Douglas,et al.  Random walks and random environments, vol. 2, random environments , 1997 .

[176]  L. Addario-Berry,et al.  Critical Random Graphs: Limiting Constructions and Distributional Properties , 2009 .

[177]  Asaf Nachmias,et al.  The Alexander-Orbach conjecture holds in high dimensions , 2008, 0806.1442.

[178]  Remco van der Hofstad,et al.  Random Graphs and Complex Networks: Volume 1 , 2016 .

[179]  Critical percolation on any quasi-transitive graph of exponential growth has no infinite clusters , 2016, 1605.05301.

[180]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[181]  Remco van der Hofstad,et al.  The lace expansion on a tree with application to networks of self-avoiding walks , 2003, Adv. Appl. Math..

[182]  Joel H. Spencer,et al.  Random subgraphs of finite graphs: I. The scaling window under the triangle condition , 2005, Random Struct. Algorithms.

[183]  J. Laurie Snell,et al.  Random Walks and Electric Networks: PREFACE , 1984 .

[184]  R. Hofstad,et al.  Mean-Field Behavior for Long- and Finite Range Ising Model, Percolation and Self-Avoiding Walk , 2007, 0712.0312.

[185]  Critical percolation in high dimensions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[186]  Gordon Slade,et al.  THE LACE EXPANSION FOR SELF-AVOIDING WALK IN FIVE OR MORE DIMENSIONS , 1992 .

[187]  Remco van der Hofstad,et al.  Asymptotic expansions in n−1 for percolation critical values on the n‐Cube and ℤn , 2005, Random Struct. Algorithms.

[188]  Philippe Deprez,et al.  Inhomogeneous Long-Range Percolation for Real-Life Network Modeling , 2014 .

[189]  R. Hofstad,et al.  Gaussian scaling for the critical spread-out contact process above the upper critical dimension , 2004, math/0402049.

[190]  A. Sznitman Vacant Set of Random Interlacements and Percolation , 2007, 0704.2560.

[191]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[192]  Donald A. Dawson,et al.  Measure-valued Markov processes , 1993 .

[193]  Harry Kesten,et al.  The incipient infinite cluster in two-dimensional percolation , 1986 .

[194]  Bruce A. Reed,et al.  The evolution of the mixing rate of a simple random walk on the giant component of a random graph , 2008, Random Struct. Algorithms.

[195]  Joel H. Spencer,et al.  The second largest component in the supercritical 2D Hamming graph , 2010, Random Struct. Algorithms.

[196]  Remco van der Hofstad,et al.  Random subgraphs of finite graphs : II. The lace expansion and the triangle condition , 2003 .

[197]  M. Aizenman,et al.  Geometric analysis of ϕ 4 fields and Ising models , 1982 .

[198]  Harris,et al.  Series study of percolation moments in general dimension. , 1990, Physical review. B, Condensed matter.

[199]  A. Sakai Lace Expansion for the Ising Model , 2005, math-ph/0510093.

[200]  Dana Randall,et al.  The van den Berg-Kesten-Reimer Inequality: A Review , 1999 .

[201]  Y. Peres,et al.  Probability on Trees and Networks , 2017 .

[202]  T. E. Harris A lower bound for the critical probability in a certain percolation process , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[203]  E. Perkins,et al.  A criterion for convergence to super-Brownian motion on path space , 2017 .

[204]  B. Nickel,et al.  Invasion Percolation on the Cayley Tree: Exact Solution of a Modified Percolation Model , 1983 .

[205]  Generalized approach to the non-backtracking lace expansion , 2015, 1506.07969.

[206]  Alan D. Sokal,et al.  Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory , 1992 .

[207]  Russell Lyons,et al.  Group-invariant Percolation on Graphs , 1999 .

[208]  P. Ferrari,et al.  An invariance principle for reversible Markov processes. Applications to random motions in random environments , 1989 .

[209]  Svante Janson,et al.  Convergence of Discrete Snakes , 2005 .

[210]  H. Kesten Some highlights of percolation , 2002, math/0212398.

[211]  L. Addario-Berry Partition Functions of Discrete Coalescents: From Cayley’s Formula to Frieze’s ζ(3) Limit Theorem , 2014, 1407.8538.

[212]  Shankar Bhamidi,et al.  Continuum limit of critical inhomogeneous random graphs , 2014, 1404.4118.

[213]  M. Aizenman,et al.  Discontinuity of the percolation density in one dimensional 1/|x−y|2 percolation models , 1986 .

[214]  M. Biskup,et al.  Quenched invariance principle for simple random walk on percolation clusters , 2005, math/0503576.

[215]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[216]  R. Hofstad,et al.  Mean-field behavior for nearest-neighbor percolation in $d>10$ , 2015, 1506.07977.

[217]  C. Newman,et al.  Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses , 1992 .

[218]  G. Slade,et al.  Logarithmic Correction for the Susceptibility of the 4-Dimensional Weakly Self-Avoiding Walk: A Renormalisation Group Analysis , 2014, 1403.7422.

[219]  N. Alon,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2004 .

[220]  Gordon Slade Scaling limits and super-Brownian motion , 2002 .

[221]  Tonci Antunovic,et al.  Sharpness of the Phase Transition and Exponential Decay of the Subcritical Cluster Size for Percolation on Quasi-Transitive Graphs , 2007, 0707.1089.

[222]  R. Hofstad,et al.  BACKBONE SCALING LIMIT OF THE HIGH-DIMENSIONAL IIC , 2013, 1706.02941.

[223]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[224]  S. Lalley Percolation clusters in hyperbolic tessellations , 2001 .

[225]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[226]  G. Grimmett,et al.  Dynamic Renormalization and Continuity of the Percolation Transition in Orthants , 1991 .

[227]  Johan van Leeuwaarden,et al.  Scaling limits for critical inhomogeneous random graphs with finite third moments , 2009, 0907.4279.

[228]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[229]  Gordon Slade,et al.  Self-avoiding walk enumeration via the lace expansion , 2007 .

[230]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .