A History of Resolution Enhancement Technology

Resolution enhancement techniques (RETs) have enabled the adoptin of optical lithography well below the wavelength of the exposing light. Examination of the history of RET and recent developments shows that only 3 of the 4 independent variables available for wavefront engineering have been utilized. This suggest that, with full utilization of polarization and other electromagnetic effects, optical lithography will be the manufacturing technology for ICs for the foreseeable future.

[1]  A. Rosenbluth,et al.  A critical examination of submicron optical lithography using simulated projection images , 1983 .

[2]  Arthur H. Guenther International Trends in Applied Optics , 2002 .

[3]  Alan E. Rosenbluth,et al.  Optimum mask and source patterns to print a given shape , 2002 .

[4]  Henry Stark,et al.  Image recovery: Theory and application , 1987 .

[5]  Burn Jeng Lin Where Is The Lost Resolution? , 1986, Advanced Lithography.

[6]  C. M. Sparrow On Spectroscopic Resolving Power , 1916 .

[7]  Yuichiro Takeuchi,et al.  New imaging technique for 64M-DRAM , 1992, Advanced Lithography.

[8]  B E Saleh,et al.  Image construction: optimum amplitude and phase masks in photolithography. , 1985, Applied optics.

[9]  Franklin M. Schellenberg,et al.  Integration of optical proximity correction strategies in strong phase shifters design for poly-gate layers , 1999, Photomask Technology.

[10]  Alfred Kwok-Kit Wong,et al.  Resolution enhancement techniques in optical lithography , 2001 .

[11]  Akiyoshi Suzuki,et al.  Subhalf-micron lithography system with phase-shifting effect , 1992, Advanced Lithography.

[12]  Steven R. J. Brueck,et al.  Extension of 193-nm immersion optical lithography to the 22-nm half-pitch node , 2004, SPIE Advanced Lithography.

[13]  Stephen D. Hsu,et al.  Contact hole reticle optimization by using interference mapping lithography (IML) , 2004, Photomask Japan.

[14]  Toshiro Tsumori,et al.  Effective light source optimization with the modified beam for depth-of-focus enhancements , 1994, Advanced Lithography.

[15]  Andrew R. Neureuther,et al.  Identifying And Monitoring Effects Of Lens Aberrations In Projection Printing , 1987, Advanced Lithography.

[16]  Neal Lafferty,et al.  Water immersion optical lithography at 193 nm , 2004 .

[17]  Toshiyuki Horiuchi,et al.  Resolution Improvement Using Auxiliary Pattern Groups in Oblique Illumination Lithography , 1993 .

[18]  B. Lin,et al.  Immersion lithography and its impact on semiconductor manufacturing , 2004 .

[19]  Bahaa E. A. Saleh,et al.  Image construction through diffraction-limited high-contrast imaging systems: an iterative approach , 1985 .

[20]  H. Hopkins On the diffraction theory of optical images , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  Henry I. Smith,et al.  Use of a pi‐phase shifting x‐ray mask to increase the intensity slope at feature edges , 1988 .

[22]  Avideh Zakhor,et al.  Fast sparse aerial-image calculation for OPC , 1995, Photomask Technology.

[23]  C. H. Ting,et al.  Proximity Effects And Influences Of Nonuniform Illumination In Projection Lithography , 1982, Advanced Lithography.

[24]  S. Vaidya,et al.  Mask assisted off‐axis illumination technique for random logic , 1993 .

[25]  Alexander Starikov Use Of A Single Size Square Serif For Variable Print Bias Compensation In Microlithography: Method, Design, And Practice , 1989, Advanced Lithography.

[26]  Adriaan van den Bos,et al.  Resolution: a survey , 1997 .

[27]  Mung Chen,et al.  Proximity Effects In Submicron Optical Lithography , 1987, Advanced Lithography.

[28]  K. Hikosaka,et al.  High performance optical lithography using a separated light source , 1992 .

[29]  Yuuki Ishii,et al.  Feasibility of immersion lithography , 2004, SPIE Advanced Lithography.

[30]  Christophe Pierrat,et al.  Automated optical proximity correction: a rules-based approach , 1994, Advanced Lithography.

[31]  Isamu Hanyu,et al.  Improving projection lithography image illumination by using sources far from the optical axis , 1991 .

[32]  Anthony Yen,et al.  Illuminator design for the printing of regular contact patterns , 1998 .

[33]  Henry I. Smith,et al.  Spatial period division—A new technique for exposing submicrometer‐linewidth periodic and quasiperiodic patterns , 1979 .

[34]  Konstantinos Adam,et al.  Polarization effects in immersion lithography , 2004, SPIE Advanced Lithography.

[35]  M. Levenson,et al.  Improving resolution in photolithography with a phase-shifting mask , 1982, IEEE Transactions on Electron Devices.

[36]  Marc D. Levenson,et al.  Extending the lifetime of optical lithography technologies with wavefront engineering , 1994 .

[37]  Yuri Granik,et al.  New process models for OPC at sub-90-nm nodes , 2003, SPIE Advanced Lithography.

[38]  Michael L. Rieger,et al.  Fast proximity correction with zone sampling , 1994, Advanced Lithography.

[39]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[40]  Robert Brandom,et al.  Application of chromeless phase-shift masks to sub-100-nm SOI CMOS transistor fabrication , 2000, Advanced Lithography.

[41]  Takeaki Ebihara,et al.  Vortex Mask: Making 80nm contacts with a twist! , 2002, Photomask Technology.

[42]  Gregory K. Hearn,et al.  64 To 256 Megabit Reticle Generation: Technology Requirements and Approaches , 1994 .

[43]  Q-Han Park,et al.  Light emission from the shadows: Surface plasmon nano-optics at near and far fields , 2002 .

[44]  M. Levenson,et al.  The phase-shifting mask II: Imaging simulations and submicrometer resist exposures , 1984, IEEE Transactions on Electron Devices.