Estimating and localizing the algebraic and total numerical errors using flux reconstructions
暂无分享,去创建一个
[1] Z. Strakos,et al. On a residual-based a posteriori error estimator for the total error , 2018 .
[2] J. Papez. Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations , 2017 .
[3] Zdenek Strakos,et al. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.
[4] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[5] Thomas A. Manteuffel,et al. LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .
[6] S. Mao,et al. Convergence and quasi-optimal complexity of a simple adaptive finite element method , 2009 .
[7] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[8] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[9] Clément Cancès,et al. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..
[10] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[11] Mark Ainsworth,et al. Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..
[12] R. Rannacher,et al. Error Control in Finite Element Computations an Introduction to Error Estimation and Mesh-size Adaptation , 1998 .
[13] R. Rannacher. Error Control in Finite Element Computations , 1999 .
[14] Martin Vohralík,et al. Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..
[15] Anthony T. Patera,et al. A GENERAL OUTPUT BOUND RESULT: APPLICATION TO DISCRETIZATION AND ITERATION ERROR ESTIMATION AND CONTROL , 2001 .
[16] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[17] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[18] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[19] Z. Strakos,et al. Distribution of the discretization and algebraic error in numerical solution of partial differential equations , 2014 .
[20] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[21] Andreas Veeser,et al. Poincaré constants for finite element stars , 2012 .
[22] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[23] Martin Vohralík,et al. Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation , 2017 .
[24] P. G. Ciarlet,et al. Linear and Nonlinear Functional Analysis with Applications , 2013 .
[25] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[26] Martin Vohralík,et al. hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..
[27] Martin Vohralík,et al. Algebraic and Discretization Error Estimation by Equilibrated Fluxes for Discontinuous Galerkin Methods on Nonmatching Grids , 2015, J. Sci. Comput..
[28] Gérard Meurant,et al. Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.
[29] I. Babuska,et al. The finite element method and its reliability , 2001 .
[30] F. Bornemann,et al. A Posteriori Error Estimates for Elliptic Problems. , 1993 .
[31] Valeria Simoncini,et al. An Optimal Iterative Solver for Symmetric Indefinite Systems Stemming from Mixed Approximation , 2010, TOMS.
[32] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[33] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[34] Gérard Meurant. The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.
[35] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[36] Serena Morigi,et al. Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.
[37] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[38] Shipeng Mao,et al. A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..
[39] Barbara I. Wohlmuth,et al. A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..
[40] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[41] P. Deuflhard. Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .
[42] G. Miel,et al. On a posteriori error estimates , 1977 .
[43] V. V. Shaidurov,et al. Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .
[44] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[45] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[46] Martin Vohralík,et al. A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows , 2013, Computational Geosciences.
[47] M. Arioli,et al. Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .
[48] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[49] Zdenek Strakos,et al. Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.
[50] Angela Kunoth,et al. A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs , 2008, Numerical Algorithms.
[51] Daniel Loghin,et al. Stopping Criteria for Adaptive Finite Element Solvers , 2013, SIAM J. Sci. Comput..
[52] R. Bruce Kellogg,et al. On the poisson equation with intersecting interfaces , 1974 .
[53] Gérard Meurant,et al. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.
[54] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[55] Ralf Hiptmair,et al. Operator Preconditioning , 2006, Comput. Math. Appl..
[56] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[57] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[58] Claes Johnson,et al. Adaptive error control for multigrid finite element , 1995, Computing.
[59] J. McWhirter. Variational Methods in Mathematics, Science and Engineering , 1978 .
[60] Carsten Carstensen,et al. Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..
[61] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[62] K. Rektorys. Variational Methods in Mathematics, Science and Engineering , 1977 .
[63] Victorita Dolean,et al. An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .
[64] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[65] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .