Estimating and localizing the algebraic and total numerical errors using flux reconstructions

This paper presents a methodology for computing upper and lower bounds for both the algebraic and total errors in the context of the conforming finite element discretization of the Poisson model problem and an arbitrary iterative algebraic solver. The derived bounds do not contain any unspecified constants and allow estimating the local distribution of both errors over the computational domain. Combining these bounds, we also obtain guaranteed upper and lower bounds on the discretization error. This allows to propose novel mathematically justified stopping criteria for iterative algebraic solvers ensuring that the algebraic error will lie below the discretization one. Our upper algebraic and total error bounds are based on locally reconstructed fluxes in $${\mathbf {H}}(\mathrm{div},\varOmega )$$H(div,Ω), whereas the lower algebraic and total error bounds rely on locally constructed $$H^1_0(\varOmega )$$H01(Ω)-liftings of the algebraic and total residuals. We prove global and local efficiency of the upper bound on the total error and its robustness with respect to the approximation polynomial degree. Relationships to the previously published estimates on the algebraic error are discussed. Theoretical results are illustrated on numerical experiments for higher-order finite element approximations and the preconditioned conjugate gradient method. They in particular witness that the proposed methodology yields a tight estimate on the local distribution of the algebraic and total errors over the computational domain and illustrate the associated cost.

[1]  Z. Strakos,et al.  On a residual-based a posteriori error estimator for the total error , 2018 .

[2]  J. Papez Algebraic Error in Matrix Computations in the Context of Numerical Solution of Partial Differential Equations , 2017 .

[3]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[4]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[5]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[6]  S. Mao,et al.  Convergence and quasi-optimal complexity of a simple adaptive finite element method , 2009 .

[7]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[8]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[9]  Clément Cancès,et al.  An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow , 2013, Math. Comput..

[10]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[11]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[12]  R. Rannacher,et al.  Error Control in Finite Element Computations an Introduction to Error Estimation and Mesh-size Adaptation , 1998 .

[13]  R. Rannacher Error Control in Finite Element Computations , 1999 .

[14]  Martin Vohralík,et al.  Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions , 2020, Math. Comput..

[15]  Anthony T. Patera,et al.  A GENERAL OUTPUT BOUND RESULT: APPLICATION TO DISCRETIZATION AND ITERATION ERROR ESTIMATION AND CONTROL , 2001 .

[16]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[17]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[18]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[19]  Z. Strakos,et al.  Distribution of the discretization and algebraic error in numerical solution of partial differential equations , 2014 .

[20]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[21]  Andreas Veeser,et al.  Poincaré constants for finite element stars , 2012 .

[22]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[23]  Martin Vohralík,et al.  Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation , 2017 .

[24]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[25]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[26]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[27]  Martin Vohralík,et al.  Algebraic and Discretization Error Estimation by Equilibrated Fluxes for Discontinuous Galerkin Methods on Nonmatching Grids , 2015, J. Sci. Comput..

[28]  Gérard Meurant,et al.  Numerical experiments in computing bounds for the norm of the error in the preconditioned conjugate gradient algorithm , 1999, Numerical Algorithms.

[29]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[30]  F. Bornemann,et al.  A Posteriori Error Estimates for Elliptic Problems. , 1993 .

[31]  Valeria Simoncini,et al.  An Optimal Iterative Solver for Symmetric Indefinite Systems Stemming from Mixed Approximation , 2010, TOMS.

[32]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[33]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[34]  Gérard Meurant The computation of bounds for the norm of the error in the conjugate gradient algorithm , 2004, Numerical Algorithms.

[35]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[36]  Serena Morigi,et al.  Computable error bounds and estimates for the conjugate gradient method , 2000, Numerical Algorithms.

[37]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[38]  Shipeng Mao,et al.  A Convergent Nonconforming Adaptive Finite Element Method with Quasi-Optimal Complexity , 2010, SIAM J. Numer. Anal..

[39]  Barbara I. Wohlmuth,et al.  A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements , 1999, Math. Comput..

[40]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[41]  P. Deuflhard Cascadic conjugate gradient methods for elliptic partial differential equations , 1993 .

[42]  G. Miel,et al.  On a posteriori error estimates , 1977 .

[43]  V. V. Shaidurov,et al.  Some estimates of the rate of convergence for the cascadic conjugate-gradient method , 1996 .

[44]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[45]  Z. Strakos,et al.  Error Estimation in Preconditioned Conjugate Gradients , 2005 .

[46]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows , 2013, Computational Geosciences.

[47]  M. Arioli,et al.  Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .

[48]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[49]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[50]  Angela Kunoth,et al.  A wavelet-based nested iteration–inexact conjugate gradient algorithm for adaptively solving elliptic PDEs , 2008, Numerical Algorithms.

[51]  Daniel Loghin,et al.  Stopping Criteria for Adaptive Finite Element Solvers , 2013, SIAM J. Sci. Comput..

[52]  R. Bruce Kellogg,et al.  On the poisson equation with intersecting interfaces , 1974 .

[53]  Gérard Meurant,et al.  On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.

[54]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[55]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[56]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[57]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[58]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[59]  J. McWhirter Variational Methods in Mathematics, Science and Engineering , 1978 .

[60]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[61]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[62]  K. Rektorys Variational Methods in Mathematics, Science and Engineering , 1977 .

[63]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[64]  G. Golub,et al.  Bounds for the error in linear systems , 1979 .

[65]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .