Frequency adjusting numerical technique for oscillator simulation

The special-purpose numerical continuation procedure for oscillator simulation is presented. The procedure allows to extend the convergence region and supports automatic guess of starting frequency point for continuation process.

[1]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[2]  S. Lampe,et al.  Global optimization applied to the oscillator problem , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[3]  D. Hente,et al.  Frequency domain continuation method for the analysis and stability investigation of nonlinear microwave circuits , 1986 .

[4]  Rainer Laur,et al.  Robust Limit Cycle Calculations of Oscillators , 2001 .

[5]  Kiyotaka Yamamura,et al.  Simple algorithms for tracing solution curves , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[6]  Alberto L. Sangiovanni-Vincentelli,et al.  Steady-state methods for simulating analog and microwave circuits , 1990, The Kluwer international series in engineering and computer science.

[7]  K.K. Gullapalli,et al.  Simulation of high-Q oscillators , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[8]  L. Chua,et al.  Tracing solution curves of nonlinear equa-tions with sharp turning points , 1984 .

[9]  Alessandra Costanzo,et al.  Harmonic-balance analysis of microwave oscillators with automatic suppression of degenerate solution , 1992 .

[10]  Kartikeya Mayaram,et al.  HomSSPICE: a homotopy-based circuit simulator for periodic steady-state analysis of oscillators , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[11]  Michael B. Steer,et al.  Computer-aided analysis of free-running microwave oscillators , 1991 .

[12]  Almudena Suarez,et al.  Steady state analysis of free or forced oscillators by harmonic balance and stability investigation of periodic and quasi-periodic regimes , 1995 .

[13]  S. G. Rusakov,et al.  A robust and efficient oscillator analysis technique using harmonic balance , 2000 .

[14]  Kartikeya Mayaram,et al.  Frequency domain simulation of high-Q oscillators with homotopy methods , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..