PDBe: Protein Data Bank in Europe

The Protein Data Bank in Europe (PDBe; pdbe.org) is actively involved in managing the international archive of biomacromolecular structure data as one of the partners in the Worldwide Protein Data Bank (wwPDB; wwpdb.org). PDBe also develops new tools to make structural data more widely and more easily available to the biomedical community. PDBe has developed a browser to access and analyze the structural archive using classification systems that are familiar to chemists and biologists. The PDBe web pages that describe individual PDB entries have been enhanced through the introduction of plain-English summary pages and iconic representations of the contents of an entry (PDBprints). In addition, the information available for structures determined by means of NMR spectroscopy has been expanded. Finally, the entire web site has been redesigned to make it substantially easier to use for expert and novice users alike. PDBe works closely with other teams at the European Bioinformatics Institute (EBI) and in the international scientific community to develop new resources with value-added information. The SIFTS initiative is an example of such a collaboration—it provides extensive mapping data between proteins whose structures are available from the PDB and a host of other biomedical databases. SIFTS is widely used by major bioinformatics resources.

[1]  Jon O Ebbert,et al.  Searching the medical literature using PubMed: a tutorial. , 2003, Mayo Clinic proceedings.

[2]  K Henrick,et al.  EMDep: a web-based system for the deposition and validation of high-resolution electron microscopy macromolecular structural information. , 2003, Journal of structural biology.

[3]  Roman A. Laskowski,et al.  PDBsum new things , 2008, Nucleic Acids Res..

[4]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[5]  Rachael P. Huntley,et al.  The GOA database in 2009—an integrated Gene Ontology Annotation resource , 2008, Nucleic Acids Res..

[6]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[7]  D. Lipman,et al.  Rapid and sensitive protein similarity searches. , 1985, Science.

[8]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[9]  H. Berman The Protein Data Bank: a historical perspective. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[10]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[11]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[12]  D. Alexander,et al.  Science friction as fantasy irritates religious sensibilities , 2010, Nature.

[13]  Sameer Velankar,et al.  E-MSD: improving data deposition and structure quality , 2005, Nucleic Acids Res..

[14]  K. Eliceiri,et al.  Bioimage informatics for experimental biology. , 2009, Annual review of biophysics.

[15]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[16]  Frances M. G. Pearl,et al.  The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution , 2006, Nucleic Acids Res..

[17]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[18]  E. James Milner-White,et al.  Sites for Phosphates and Iron-Sulfur Thiolates in the First Membranes: 3 to 6 Residue Anion-Binding Motifs (Nests) , 2005, Origins of Life and Evolution of Biospheres.

[19]  Haruki Nakamura,et al.  Remediation of the protein data bank archive , 2007, Nucleic Acids Res..

[20]  Adel Golovin,et al.  MSDmotif: exploring protein sites and motifs , 2008, BMC Bioinformatics.

[21]  Robert D. Finn,et al.  InterPro in 2011: new developments in the family and domain prediction database , 2011, Nucleic acids research.

[22]  Sameer Velankar,et al.  E-MSD: an integrated data resource for bioinformatics , 2004, Nucleic Acids Res..

[23]  M. Nilges,et al.  Bayesian estimation of NMR restraint potential and weight: A validation on a representative set of protein structures , 2011, Proteins.

[24]  B D Sykes,et al.  NMR solution structure of calcium-saturated skeletal muscle troponin C. , 1995, Biochemistry.

[25]  Adel Golovin,et al.  Chemical Substructure Search in SQL , 2009, J. Chem. Inf. Model..

[26]  M Gerstein,et al.  GeneCensus: genome comparisons in terms of metabolic pathway activity and protein family sharing. , 2002, Nucleic acids research.

[27]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[28]  Carole A. Goble,et al.  BioCatalogue: a universal catalogue of web services for the life sciences , 2010, Nucleic Acids Res..

[29]  Wolfgang Rieping,et al.  Bmc Structural Biology Relationship between Chemical Shift Value and Accessible Surface Area for All Amino Acid Atoms , 2009 .

[30]  Tanya Z. Berardini,et al.  PatMatch: a program for finding patterns in peptide and nucleotide sequences , 2005, Nucleic Acids Res..

[31]  D. G. Morris,et al.  Common ring motifs in proteins involving asparagine or glutamine amide groups hydrogen-bonded to main-chain atoms. , 1993, Journal of molecular biology.

[32]  Tim J. P. Hubbard,et al.  Data growth and its impact on the SCOP database: new developments , 2007, Nucleic Acids Res..

[33]  Michael J. Hartshorn,et al.  AstexViewerTM †: a visualisation aid for structure-based drug design , 2002, J. Comput. Aided Mol. Des..

[34]  Tim J. Stevens,et al.  A nomenclature and data model to describe NMR experiments , 2006, Journal of biomolecular NMR.

[35]  L A Kelley,et al.  OLDERADO: On‐line database of ensemble representatives and domains , 1997, Protein science : a publication of the Protein Society.

[36]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[37]  L. Kelley,et al.  An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. , 1996, Protein engineering.

[38]  Adel Golovin,et al.  MSDsite: A database search and retrieval system for the analysis and viewing of bound ligands and active sites , 2004, Proteins.

[39]  Sameer Velankar,et al.  Straightforward and complete deposition of NMR data to the PDBe , 2010, Journal of biomolecular NMR.

[40]  Nathan Linial,et al.  ProtoMap: automatic classification of protein sequences and hierarchy of protein families , 2000, Nucleic Acids Res..

[41]  Akira R. Kinjo,et al.  Protein structure databases with new web services for structural biology and biomedical research , 2008, Briefings Bioinform..

[42]  Alexandre M J J Bonvin,et al.  DRESS: a database of REfined solution NMR structures , 2004, Proteins.

[43]  K. Henrick,et al.  New electron microscopy database and deposition system. , 2002, Trends in biochemical sciences.

[44]  Charles A Laughton,et al.  COCO: A simple tool to enrich the representation of conformational variability in NMR structures , 2009, Proteins.

[45]  Susan S. Taylor,et al.  2.2 A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. , 1993, Acta crystallographica. Section D, Biological crystallography.

[46]  M. Stone,et al.  NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2. , 2000, Biochemistry.

[47]  Ian Sillitoe,et al.  Extending CATH: increasing coverage of the protein structure universe and linking structure with function , 2010, Nucleic Acids Res..

[48]  Akira R. Kinjo,et al.  Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format , 2011, Nucleic Acids Res..

[49]  Rachel Kolodny,et al.  Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. , 2005, Journal of molecular biology.

[50]  Wim Vranken,et al.  A global analysis of NMR distance constraints from the PDB , 2007, Journal of biomolecular NMR.

[51]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[52]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[53]  Scott Federhen,et al.  The NCBI Taxonomy database , 2011, Nucleic Acids Res..

[54]  Anastassis Perrakis,et al.  Insights into autotaxin: how to produce and present a lipid mediator , 2011, Nature Reviews Molecular Cell Biology.

[55]  J. Watson,et al.  The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins. , 2002, Journal of molecular biology.

[56]  Sameer Velankar,et al.  The Protein Data Bank in Europe (PDBe): bringing structure to biology , 2011, Acta crystallographica. Section D, Biological crystallography.

[57]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[58]  John L. Markley,et al.  The NMR restraints grid at BMRB for 5,266 protein and nucleic acid PDB entries , 2009, Journal of biomolecular NMR.

[59]  Christian J. A. Sigrist,et al.  Nucleic Acids Research Advance Access published November 14, 2007 The 20 years of PROSITE , 2007 .

[60]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[61]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[62]  Christoph Steinbeck,et al.  Chemical Entities of Biological Interest: an update , 2009, Nucleic Acids Res..

[63]  Alexandre M J J Bonvin,et al.  BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures , 2005, Journal of biomolecular NMR.

[64]  Haruki Nakamura,et al.  BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions , 2008, Journal of biomolecular NMR.

[65]  Ron Poet,et al.  Loops, bulges, turns and hairpins in proteins , 1987 .

[66]  J. Watson,et al.  A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. , 2002, Journal of molecular biology.

[67]  David S. Goodsell,et al.  The RCSB Protein Data Bank: redesigned web site and web services , 2010, Nucleic Acids Res..

[68]  W. Vranken,et al.  Validation of archived chemical shifts through atomic coordinates , 2010, Proteins.

[69]  Sean R. Eddy,et al.  The Distributed Annotation System , 2001, BMC Bioinformatics.

[70]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[71]  Y. Nishimura,et al.  NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains. , 2001, Journal of molecular biology.

[72]  Kim Henrick,et al.  Common subgraph isomorphism detection by backtracking search , 2004, Softw. Pract. Exp..

[73]  Geoffrey J. Barton,et al.  3Dee: a database of protein structural domains , 2001, Bioinform..

[74]  María Martín,et al.  Ongoing and future developments at the Universal Protein Resource , 2010, Nucleic Acids Res..

[75]  Sameer Velankar,et al.  PDBe: Protein Data Bank in Europe , 2009, Nucleic Acids Res..

[76]  T. N. Bhat,et al.  A framework for scientific data modeling and automated software development , 2005, Bioinform..

[77]  Philip E. Bourne,et al.  The RCSB PDB information portal for structural genomics , 2005, Nucleic Acids Res..

[78]  K Henrick,et al.  Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. , 2004, Acta crystallographica. Section D, Biological crystallography.

[79]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[80]  The UniProt Consortium,et al.  The Universal Protein Resource (UniProt) 2009 , 2008, Nucleic Acids Res..

[81]  Rachael P. Huntley,et al.  The UniProt-GO Annotation database in 2011 , 2011, Nucleic Acids Res..

[82]  Haruki Nakamura,et al.  The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data , 2006, Nucleic Acids Res..

[83]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[84]  Cheryl H. Arrowsmith,et al.  A novel strategy for NMR resonance assignment and protein structure determination , 2011, Journal of biomolecular NMR.

[85]  E J Milner-White,et al.  Beta-bulges within loops as recurring features of protein structure. , 1987, Biochimica et biophysica acta.

[86]  F. Allen,et al.  Mimicry by asx‐ and ST‐turns of the four main types of β‐turn in proteins , 2004 .

[87]  Miron Livny,et al.  RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank , 2005, Proteins.

[88]  L. Kelley,et al.  An automated approach for defining core atoms and domains in an ensemble of NMR-derived protein structures. , 1997, Protein engineering.

[89]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[90]  T. N. Bhat,et al.  The CCPN project: an interim report on a data model for the NMR community , 2002, Nature Structural Biology.

[91]  Thomas J. Oldfield,et al.  A Java applet for multiple linked visualization of protein structure and sequence , 2004, J. Comput. Aided Mol. Des..