Unique Spectroscopy and Imaging of Mars with the James Webb Space Telescope

In this paper, we summarize the main capabilities of the James Webb Space Telescope (JWST) for performing observations of Mars. The distinctive vantage point of JWST at the Sun–Earth Lagrange point (L2) will allow sampling the full observable disk, permitting the study of short-term phenomena, diurnal processes (across the east–west axis), and latitudinal processes between the hemispheres (including seasonal effects) with excellent spatial resolutions (0.″07 at 2 μm). Spectroscopic observations will be achievable in the 0.7–5 μm spectral region with NIRSpec at a maximum resolving power of 2700 and with 8000 in the 1–1.25 μm range. Imaging will be attainable with the Near-Infrared Camera at 4.3 μm and with two narrow filters near 2 μm, while the nightside will be accessible with several filters in 0.5 to 2 μm. Such a powerful suite of instruments will be a major asset for the exploration and characterization of Mars. Some science cases include the mapping of the water D/H ratio, investigations of the Martian mesosphere via the characterization of the non-local thermodynamic equilibrium CO2 emission at 4.3 μm, studies of chemical transport via observations of the O2 nightglow at 1.27 μm, high-cadence mapping of the variability dust and water-ice clouds, and sensitive searches for trace species and hydrated features on the Martian surface. In-flight characterization of the instruments may allow for additional science opportunities.

[1]  T. Encrenaz,et al.  Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs , 2015, Science.

[2]  P Coll,et al.  Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars , 2015, Journal of geophysical research. Planets.

[3]  Andrew Steele,et al.  Mars methane detection and variability at Gale crater , 2015, Science.

[4]  K. Zahnle,et al.  Play it again, SAM , 2015, Science.

[5]  A. Spiga,et al.  Modeling the microphysics of CO2 ice clouds within wave-induced cold pockets in the martian mesosphere , 2014 .

[6]  Jean-Pierre Bibring,et al.  Water in the Martian regolith from OMEGA/Mars Express , 2014, 1407.2550.

[7]  S. Guzewich,et al.  Influence of water ice clouds on nighttime tropical temperature structure as seen by the Mars Climate Sounder , 2014 .

[8]  R. V. Morris,et al.  Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[9]  M B Madsen,et al.  Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars , 2013, Science.

[10]  R. V. Morris,et al.  Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover , 2013, Science.

[11]  John P Grotzinger,et al.  Analysis of Surface Materials by the Curiosity Mars Rover , 2013, Science.

[12]  S. Murchie,et al.  First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere , 2013 .

[13]  Andrew Steele,et al.  Isotope Ratios of H, C, and O in CO2 and H2O of the Martian Atmosphere , 2013, Science.

[14]  Jean-Luc Moncet,et al.  Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies , 2013 .

[15]  T. Encrenaz,et al.  A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy , 2013 .

[16]  M. Wolff,et al.  Aphelion water‐ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express , 2012 .

[17]  Jean-Pierre Bibring,et al.  Iron mineralogy of the surface of Mars from the 1 μm band spectral properties , 2012 .

[18]  Jean-Pierre Bibring,et al.  First detection of O 2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions , 2012 .

[19]  S. Murchie,et al.  Correction to "Extensive MRO CRISM observations of 1.27 µm O2 airglow in Mars polar night and their comparison to MRO MCS temperature profiles and LMD GCM simulations" , 2012 .

[20]  Jean-Pierre Bibring,et al.  Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx , 2012 .

[21]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: Observations, interpretation and future plans , 2012 .

[22]  A. Spiga,et al.  Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere , 2012 .

[23]  P. Drossart,et al.  Modeling the atmospheric limb emission of CO2 at 4.3 μm in the terrestrial planets , 2011 .

[24]  F. Montmessin,et al.  Interferometric millimeter observations of water vapor on Mars and comparison with Mars Express measurements , 2011 .

[25]  G. Villanueva,et al.  Measurement of the Isotopic Signatures of Water on Mars: Implications for Studying Methane , 2011 .

[26]  John F. Mustard,et al.  Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars , 2010 .

[27]  F. Scholten,et al.  Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models , 2010 .

[28]  P. Drossart,et al.  Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS‐Venus Express , 2010 .

[29]  Miguel de Val-Borro,et al.  Herschel/HIFI observations of Mars: First detection of O2 at submillimetre wavelengths and upper limits on HCl and H2O2 , 2010, 1007.1301.

[30]  S. Murchie,et al.  Detection of Hydrated Silicates in Crustal Outcrops in the Northern Plains of Mars , 2010, Science.

[31]  S. Fonti,et al.  Mapping the methane on Mars , 2010 .

[32]  David C. Catling,et al.  Is there methane on Mars , 2010 .

[33]  G. Neukum,et al.  Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM , 2010 .

[34]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[35]  F. G. Carrozzo,et al.  O2 1.27 μm emission maps as derived from OMEGA/MEx data , 2009 .

[36]  A. Zinzi,et al.  Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature , 2009 .

[37]  R. Kuzmin,et al.  Spectral and thermodynamic constraints on the existence of gypsum at the Juventae Chasma on Mars , 2009 .

[38]  Giuseppe Piccioni,et al.  Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express , 2009 .

[39]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[40]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[41]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[42]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[43]  Jean-Pierre Bibring,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface , 2007 .

[44]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[45]  J. Dodion,et al.  Martian ice cloud distribution obtained from SPICAM nadir UV measurements , 2007 .

[46]  T. Glotch,et al.  Evidence for aqueous deposition of hematite-and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars , 2007 .

[47]  Roberto Orosei,et al.  Subsurface Radar Sounding of the South Polar Layered Deposits of Mars , 2007, Science.

[48]  Kenneth S Edgett,et al.  Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars , 2006, Science.

[49]  J. G. Ward,et al.  Nature and Origin of the Hematite-Bearing Plains of Terra Meridiani Based on Analyses of Orbital and Mars Exploration Rover Data Sets , 2006 .

[50]  Bruce A. Cantor,et al.  Interannual variability of water ice clouds over major martian volcanoes observed by MOC , 2006 .

[51]  M. Lopez-Valverde,et al.  Observations of non-LTE emission at 4–5 microns with the planetary Fourier spectrometer abord the Mars Express mission , 2006 .

[52]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[53]  P. Price,et al.  Microbial origin of excess methane in glacial ice and implications for life on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[55]  T. Encrenaz,et al.  A Martian PFS average spectrum: Comparison with ISO SWS , 2005 .

[56]  P. Drossart,et al.  Analysis of CO2 non-LTE emissions at 4.3μm in the Martian atmosphere as observed by PFS/Mars Express and SWS/ISO , 2005 .

[57]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[58]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[59]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[60]  F. Forget,et al.  Modeling the annual cycle of HDO in the Martian atmosphere , 2005 .

[61]  Marco Giuranna,et al.  Detection of Methane in the Atmosphere of Mars , 2004, Science.

[62]  Tobias Owen,et al.  Detection of methane in the martian atmosphere: evidence for life? , 2004 .

[63]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[64]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[65]  T. Encrenaz,et al.  Hydrogen peroxide on Mars: evidence for spatial and seasonal variations , 2004 .

[66]  Franck Lefèvre,et al.  Three-dimensional modeling of ozone on Mars , 2004 .

[67]  R. Clancy,et al.  A measurement of the 362 GHz absorption line of Mars atmospheric H2O2 , 2004 .

[68]  Mark I. Richardson,et al.  Thermal Emission Imaging System (THEMIS) infrared observations of atmospheric dust and water ice cloud optical depth , 2003 .

[69]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[70]  V. Krasnopolsky Mapping of Mars O2 1.27 μm dayglow at four seasonal points , 2003 .

[71]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[72]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[73]  M. Caplinger,et al.  The seasonal behavior of water ice clouds in the Tharsis and Valles Marineris regions of Mars: Mars Orbiter Camera Observations , 2003 .

[74]  D. Gilichinsky,et al.  Supercooled water brines within permafrost-an unknown ecological niche for microorganisms: a model for astrobiology. , 2003, Astrobiology.

[75]  B. Christner Incorporation of DNA and Protein Precursors into Macromolecules by Bacteria at −15oC , 2002, Applied and Environmental Microbiology.

[76]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[77]  A. Ingersoll,et al.  Martian Clouds Observed by Mars Global Surveyor Mars Orbiter Camera from Ls 135 to 310 , 2002 .

[78]  M. DiSanti,et al.  Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion , 2002 .

[79]  Franck Montmessin,et al.  Isotopic fractionation through water vapor condensation: The Deuteropause, a cold trap for deuterium in the atmosphere of Mars , 2001 .

[80]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[81]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[82]  J. Bandfield,et al.  Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year , 2001 .

[83]  T. Encrenaz,et al.  The 2.4– spectrum of Mars observed with the infrared space observatory , 2000 .

[84]  D. Paige,et al.  Viking era water-ice clouds , 2000 .

[85]  E. Lellouch,et al.  Vapor Pressure Isotope Fractionation Effects in Planetary Atmospheres: Application to Deuterium , 1999, astro-ph/9911255.

[86]  M. Carr Retention of an atmosphere on early Mars , 1999 .

[87]  G. Pettengill,et al.  Observations of the north polar region of Mars from the Mars orbiter laser altimeter. , 1998, Science.

[88]  Gordon L. Bjoraker,et al.  High‐resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO , 1997 .

[89]  R. Clancy,et al.  Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere , 1996 .

[90]  T. Encrenaz,et al.  The Thermal Structure and Dynamics of the Atmosphere of Venus between 70 and 90 km from the Galileo-NIMS Spectra , 1995 .

[91]  G. Hancock,et al.  The relative quantum yields of O2(a?g) from the photolysis of ozone in the wavelength range 270nm = , 1993 .

[92]  D. Tholen,et al.  Isotopic Abundance Ratios for Hydrogen and Oxygen in the Martian Atmosphere , 1989 .

[93]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[94]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[95]  Robert M. Haberle,et al.  Some effects of global dust storms on the atmospheric circulation of Mars , 1980 .

[96]  W. Traub,et al.  The latitude variation of O2 dayglow and O3 abundance on Mars , 1979 .

[97]  William C. Maguire,et al.  Martian isotopic ratios and upper limits for possible minor constituents as derived from Mariner 9 infrared spectrometer data , 1977 .

[98]  W. Traub,et al.  Detection of O2 dayglow emission from Mars and the Martian ozone abundance , 1976 .

[99]  T. E. Burke,et al.  Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9. , 1973 .

[100]  G. Anderson,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Seasonal Variation of Ozone on Mars , 1973, Science.

[101]  S. Maurice,et al.  Quantitative Assessments of the Martian Hydrosphere , 2013 .

[102]  M. Sornig,et al.  Mars mesospheric zonal wind around northern spring equinox from infrared heterodyne observations of CO2 , 2012 .

[103]  Bruce A. Cantor,et al.  MOC observations of the 2001 Mars planet-encircling dust storm , 2007 .

[104]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .