Luminescent sensors based on quantum dot-molecule conjugates.

Semiconductor quantum dots (QDs) are inorganic nanoparticles that exhibit unique size-dependent optical and electronic properties; in particular, they are strongly luminescent. Their surface can be chemically modified, by either covalent or non-covalent approaches, in order to interface them with molecular units endowed with specific physical and chemical properties. Photoinduced electron- and energy-transfer processes between quantum dots and attached molecular species offer versatile strategies to modulate the photophysical properties of these nanoassemblies in response to a chemical stimulation. Hence, QD-molecule conjugates are appealing platforms for developing luminescent sensors according to a modular design. In this review we discuss the principles underlying the rational construction of this kind of multicomponent species, and we illustrate selected examples of luminescent QD-based sensors taken from the recent literature.

[1]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[2]  Moungi G Bawendi,et al.  A ratiometric CdSe/ZnS nanocrystal pH sensor. , 2006, Journal of the American Chemical Society.

[3]  F. Raymo,et al.  pH-sensitive ligand for luminescent quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[5]  M. Bawendi,et al.  Two-photon oxygen sensing with quantum dot-porphyrin conjugates. , 2013, Inorganic chemistry.

[6]  I. Willner,et al.  Optical detection of glucose by means of metal nanoparticles or semiconductor quantum dots. , 2009, Small.

[7]  C. M. Donegá,et al.  Synthesis and properties of colloidal heteronanocrystals , 2011 .

[8]  D. Rehm,et al.  Kinetics of Fluorescence Quenching by Electron and H‐Atom Transfer , 1970 .

[9]  Christina Marie Tyrakowski,et al.  A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. , 2014, Physical chemistry chemical physics : PCCP.

[10]  A. Credi,et al.  Comprar Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld | Vincenzo Balzani | 9783527318001 | Wiley , 2008 .

[11]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[12]  I. Willner,et al.  Beta-cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. , 2009, Nano letters.

[13]  A. Credi,et al.  Hybrids of semiconductor quantum dot and molecular species for photoinduced functions , 2014 .

[14]  M. Amelia,et al.  Effect of protons on CdSe and CdSe-ZnS nanocrystals in organic solution. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[15]  S. Sant Nanoparticles: From Theory to Applications , 2012 .

[16]  Igor L. Medintz,et al.  Quantum dot-based resonance energy transfer and its growing application in biology. , 2009, Physical chemistry chemical physics : PCCP.

[17]  Moungi G Bawendi,et al.  Compact biocompatible quantum dots functionalized for cellular imaging. , 2008, Journal of the American Chemical Society.

[18]  A. Eychmüller,et al.  Colloidal semiconductor nanocrystals: the aqueous approach. , 2013, Chemical Society reviews.

[19]  Maung Kyaw Khaing Oo,et al.  Highly sensitive multiplexed heavy metal detection using quantum-dot-labeled DNAzymes. , 2010, ACS nano.

[20]  Niko Hildebrandt,et al.  Quantum-dot-basedFörster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. , 2013, ACS nano.

[21]  J. Kao,et al.  Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth. , 2009, Journal of the American Chemical Society.

[22]  S. Achilefu,et al.  Induction of pH sensitivity on the fluorescence lifetime of quantum dots by NIR fluorescent dyes. , 2012, Journal of the American Chemical Society.

[23]  John F. Callan,et al.  Hydrophilic CdSe-ZnS core-shell quantum dots with reactive functional groups on their surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[24]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[25]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[26]  Hedi Mattoussi,et al.  Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. , 2015, Chemical Society reviews.

[27]  F. Raymo,et al.  Electron and energy transfer mechanisms to switch the luminescence of semiconductor quantum dots , 2008 .

[28]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[29]  R. Jain,et al.  Metabolic tumor profiling with pH, oxygen, and glucose chemosensors on a quantum dot scaffold. , 2013, Inorganic chemistry.

[30]  M. C. Morant-Miñana,et al.  Quantum dot/cyclodextrin supramolecular systems based on efficient molecular recognition and their use for sensing. , 2012, Chemical communications.

[31]  Igor L. Medintz,et al.  Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. , 2010, Nature materials.

[32]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[33]  Gang Bao,et al.  Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. , 2012, ACS nano.

[34]  Cuiping Han,et al.  Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO_3^2− anions , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[35]  M. Amelia,et al.  Electrochemical properties of CdSe and CdTe quantum dots. , 2012, Chemical Society reviews.

[36]  Liang Li,et al.  Core/Shell semiconductor nanocrystals. , 2009, Small.

[37]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[38]  Clemens Burda,et al.  The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. , 2012, Chemical Society reviews.

[39]  F. Raymo,et al.  Luminescent chemosensors based on semiconductor quantum dots. , 2007, Physical chemistry chemical physics : PCCP.

[40]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[41]  J. Donegan,et al.  Optimisation of the synthesis and modification of CdTe quantum dots for enhanced live cell imaging , 2006 .

[42]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[43]  F. Raymo,et al.  Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  Xiaoyin Zhou,et al.  Semiconductor nanocrystals with adjustable hole acceptors: tuning the fluorescence intensity by metal-ion binding. , 2010, Angewandte Chemie.

[45]  John F. Callan,et al.  A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes. , 2008, Chemical communications.

[46]  A. Credi,et al.  Modulation of the solubility of luminescent semiconductor nanocrystals through facile surface functionalization. , 2014, Chemical Communications.

[47]  M. Bawendi,et al.  CdSe nanocrystal based chem-/bio- sensors. , 2007, Chemical Society reviews.

[48]  B. Lounis,et al.  Spectroscopy of single nanocrystals. , 2014, Chemical Society reviews.

[49]  M. Amelia,et al.  A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. , 2011, Chemical communications.

[50]  I. Willner,et al.  Multiplexed analysis of Hg2+ and Ag+ ions by nucleic acid functionalized CdSe/ZnS quantum dots and their use for logic gate operations. , 2009, Angewandte Chemie.

[51]  Igor L. Medintz,et al.  Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. , 2012, Small.

[52]  N. Kaur,et al.  Fluorescent Recognition of Potassium and Calcium Ions Using Functionalised CdSe / ZnS Quantum Dots , 2009, Journal of Fluorescence.

[53]  Itamar Willner,et al.  Competitive analysis of saccharides or dopamine by boronic acid-functionalized CdSe-ZnS quantum dots. , 2009, Chemical communications.

[54]  Mark A Green The nature of quantum dot capping ligands , 2010 .

[55]  Itamar Willner,et al.  Optical molecular sensing with semiconductor quantum dots (QDs). , 2012, Chemical Society reviews.

[56]  N. Erathodiyil,et al.  Functionalization of inorganic nanoparticles for bioimaging applications. , 2011, Accounts of chemical research.

[57]  Igor L. Medintz,et al.  Quantum Dots in Bioanalysis: A Review of Applications across Various Platforms for Fluorescence Spectroscopy and Imaging , 2013, Applied spectroscopy.

[58]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[59]  Chun-Yen Chen,et al.  Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. , 2006, Chemical communications.

[60]  Leah E. Page,et al.  Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. , 2011, Chemical communications.

[61]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[62]  Hans-Gerd Löhmannsröben,et al.  Quantum dot biosensors for ultrasensitive multiplexed diagnostics. , 2010, Angewandte Chemie.

[63]  David E Benson,et al.  A modular nanoparticle-based system for reagentless small molecule biosensing. , 2005, Journal of the American Chemical Society.

[64]  A. P. Silva,et al.  Luminescent Sensing with Quantum Dots , 2007 .

[65]  John F. Callan,et al.  Anion Sensing with Luminescent Quantum Dots – A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism , 2008, Journal of Fluorescence.

[66]  F. Raymo,et al.  A mechanism to signal receptor-substrate interactions with luminescent quantum dots. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[67]  X. Hou,et al.  Semicondutor quantum dots-based metal ion probes. , 2014, Nanoscale.

[68]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.