Reduction spheroids preserve a uranium isotope record of the ancient deep continental biosphere

[1]  J. Parnell,et al.  Reduction spheroids preserve a uranium isotope record of the ancient deep continental biosphere , 2018, Nature Communications.

[2]  J. Parnell,et al.  The deep history of Earth's biomass , 2018, Journal of the Geological Society.

[3]  D. Ming,et al.  Redox stratification of an ancient lake in Gale crater, Mars , 2017, Science.

[4]  T. Borch,et al.  Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits , 2017, Nature Communications.

[5]  Marco Stampanoni,et al.  Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt , 2017, Nature Ecology &Evolution.

[6]  C. Stirling,et al.  Uranium isotope fractionation , 2017 .

[7]  E. Bellefroid,et al.  Integrated geochemical-petrographic insights from component-selective δ238U of Cryogenian marine carbonates , 2016 .

[8]  Brian C. Thomas,et al.  Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system , 2016, Nature Communications.

[9]  K. Williams,et al.  Reactive transport of uranium in a groundwater bioreduction study: Insights from high-temporal resolution 238U/235U data , 2016 .

[10]  J. Noordmann,et al.  238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance , 2016, Isotopes in environmental and health studies.

[11]  S. Breitenbach,et al.  Closing in on the marine 238U/235U budget , 2016 .

[12]  P. Meister For the deep biosphere, the present is not always the key to the past: what we can learn from the geological record , 2015 .

[13]  N. Dauphas,et al.  Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia , 2015 .

[14]  J. Parnell,et al.  Metalliferous Biosignatures for Deep Subsurface Microbial Activity , 2015, Origins of Life and Evolution of Biospheres.

[15]  J. Parnell,et al.  Metalliferous Biosignatures for Deep Subsurface Microbial Activity , 2015, Origins of Life and Evolution of Biospheres.

[16]  S. Humphris,et al.  Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin , 2015, Proceedings of the National Academy of Sciences.

[17]  C. Stirling,et al.  Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction , 2015 .

[18]  T. Johnson,et al.  Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI) , 2015 .

[19]  R. Bernier-Latmani,et al.  Uranium isotopes fingerprint biotic reduction , 2015, Proceedings of the National Academy of Sciences.

[20]  T. Lyons,et al.  A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox , 2014 .

[21]  R. Sanford,et al.  Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates , 2014 .

[22]  C. Stirling,et al.  Fractionation of 238U/235U by reduction during low temperature uranium mineralisation processes , 2014 .

[23]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[24]  J. Parnell,et al.  Weighing the deep continental biosphere. , 2014, FEMS microbiology ecology.

[25]  B. Jørgensen,et al.  Cyclic 100-ka (glacial-interglacial) migration of subseafloor redox zonation on the Peruvian shelf , 2013, Proceedings of the National Academy of Sciences.

[26]  John Parnell,et al.  Groundwater activity on Mars and implications for a deep biosphere , 2013 .

[27]  S. D’Hondt,et al.  Nature and Extent of the Deep Biosphere , 2012 .

[28]  James A. Davis,et al.  Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer , 2012 .

[29]  K. Edwards,et al.  The Deep, Dark Energy Biosphere: Intraterrestrial Life on Earth , 2012 .

[30]  P. Fralick,et al.  Sedimentology of a wet, pre‐vegetation floodplain assemblage , 2012 .

[31]  S. Noble,et al.  238U/235U Systematics in Terrestrial Uranium-Bearing Minerals , 2012, Science.

[32]  J. Parnell,et al.  Reduction spots in the Mesoproterozoic age: implications for life in the early terrestrial record , 2010, International Journal of Astrobiology.

[33]  A. Anbar,et al.  Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes , 2010 .

[34]  T. Johnson,et al.  Variations in 238U/235U in uranium ore deposits: Isotopic signatures of the U reduction process? , 2009 .

[35]  K. Ragnarsdóttir,et al.  OF REDUCTION NODULES FROM BUDLEIGH SALTERTON , DEVON , 2009 .

[36]  E. Boyle,et al.  Natural fractionation of 238U/235U , 2008 .

[37]  A. Teske,et al.  Uncultured archaea in deep marine subsurface sediments: have we caught them all? , 2008, The ISME Journal.

[38]  C. Stirling,et al.  Low-temperature isotopic fractionation of uranium , 2007 .

[39]  E. Schauble Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements , 2007 .

[40]  E. Boyle,et al.  Natural fractionation of 238 U / 235 U , 2007 .

[41]  R. Sanford,et al.  Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron. , 2006, Environmental science & technology.

[42]  M. Nomura,et al.  Temperature Dependence of Isotope Effects in Uranium Chemical Exchange Reactions , 2006 .

[43]  F. Brockman,et al.  Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault , 2005, Applied and Environmental Microbiology.

[44]  D. J.,et al.  Filamentous fabrics in low-temperature mineral assemblages : are they fossil biomarkers ? Implications for the search for a subsurface fossil record on the early Earth and Mars , 2004 .

[45]  William J. Jenkins,et al.  A reevaluation of the oceanic uranium budget for the Holocene , 2002 .

[46]  N. Nakamura,et al.  Do reduction spots predate finite strain? A magnetic diagnosis of Cambrian slates in North Wales , 2001 .

[47]  Beda A. Hofmann,et al.  Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars , 2000 .

[48]  J. Parnell Alteration of crystalline basement rocks by hydrocarbon-bearing fluids: Moinian of Ross-shire, Scotland , 1996 .

[49]  J. Bigeleisen Nuclear Size and Shape Effects in Chemical Reactions. Isotope Chemistry of the Heavy Elements , 1996 .

[50]  B. Hofmann,et al.  Age constraints of reduction spot formation from Permian red beds sediments, northern Switzerland, inferred from U-Th-Pb systematics , 1996 .

[51]  Palmer,et al.  The Uranium-Thorium and rare earth element geochemistry of reduced nodules from Budleigh Salterton, Devon , 1994 .

[52]  B. Hofmann Organic Matter Associated with Mineralized Reduction Spots in Red Beds , 1993 .

[53]  J. Bateson,et al.  Reduction and related phenomena in the New Red Sandstone of south-west England , 1992 .

[54]  Edward R. Landa,et al.  Microbial reduction of uranium , 1991, Nature.

[55]  B. Hofmann Mineralogy and geochemistry of reduction spheroids in red beds , 1991 .

[56]  Beda A. Hofmann,et al.  Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models , 1990 .

[57]  P. Eakin,et al.  The replacement of sandstones by uraniferous hydrocarbons: significance for petroleum migration , 1987, Mineralogical Magazine.

[58]  M. Picard Continental Red Beds , 1981 .