Enhanced Thin Solar Cells Using Optical Nano-Antenna Induced Hybrid Plasmonic Travelling-Wave

A new method is proposed to trap the light inside the solar cells. In this method, a nanoantenna structure with hybrid plasmonic travelling wave is designed and implemented in the silicon-based solar cell, to redirect the incident light. The antenna converts the vertically propagating light to a guiding mode travelling in the lateral direction of the solar cell resulting in enhanced absorption. The Floquet's theorem in conjunction with surface plasmon theory is used to design the antenna; and a three-dimensional full-wave numerical analysis is done to validate the design. The antenna is implemented in the solar cell structure, and the characteristics of proposed structure are numerically analyzed using finite-difference frequency domain method. Simulation results show that by using the proposed nanoantenna as the back contact of the solar cell, absorbance is significantly enhanced in visible and infrared range of solar spectrum and the short circuit current of the solar cell is enhanced for both TM and TE polarization by a factor of 1.32 and 1.30, respectively.

[1]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[2]  H. Giessen,et al.  Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures. , 2013, Optics express.

[3]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[4]  Y. Kadoya,et al.  Directional control of light by a nano-optical Yagi–Uda antenna , 2009, 0910.2291.

[5]  Krishanu Shome,et al.  Plasmonic effects in ultrathin amorphous silicon solar cells: performance improvements with Ag nanoparticles on the front, the back, and both. , 2015, Optics express.

[6]  P. Pikhitsa,et al.  Three-dimensional assembly of nanoparticles from charged aerosols. , 2011, Nano letters.

[7]  Y. Akimov,et al.  Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells , 2011 .

[8]  Zhe Wu,et al.  Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres , 2011 .

[9]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Ru-Wen Peng,et al.  Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal. , 2013, Optics express.

[12]  L. Yousefi Highly Directive Hybrid Plasmonic Leaky Wave Optical Nano-Antenna , 2014 .

[13]  S. Xiao,et al.  Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures , 2012 .

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  Tatsuo Itoh,et al.  Leaky-Wave Antennas , 2008, Proceedings of the IEEE.

[16]  Minjin Kim,et al.  Three dimensional a-Si:H thin-film solar cells with silver nano-rod back electrodes , 2014 .

[17]  Sergey Varlamov,et al.  Light Trapping in Thin Film Polycrystalline Silicon Solar Cell using Diffractive Gratings , 2013 .

[18]  Stephan W Koch,et al.  Introduction to semiconductor optics , 1993 .

[19]  Jie Li,et al.  Light absorption enhancement in thin-film solar cells by embedded lossless silica nanoparticles , 2013, Journal of Optics.

[20]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[21]  A. Cutolo,et al.  Plasmonic Light Trapping in Thin-Film Solar Cells: Impact of Modeling on Performance Prediction , 2015, Materials.

[22]  Fuhua Yang,et al.  Multilayer silver nanoparticles for light trapping in thin film solar cells , 2013 .

[23]  Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. , 2011, Optics express.

[24]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[25]  Leila Yousefi,et al.  Waveguide-fed optical hybrid plasmonic patch nano-antenna. , 2012, Optics express.

[26]  E. V. Chulkov,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2007 .

[27]  O. Losito,et al.  Travelling Planar Wave Antenna for Wireless Communications , 2012 .

[28]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[29]  Arthur Weeber,et al.  Plasmonic light‐trapping in a‐Si:H solar cells by front‐side Ag nanoparticle arrays: A benchmarking study , 2013 .

[30]  Filippo Capolino,et al.  Silicon-based optical leaky wave antenna with narrow beam radiation. , 2011, Optics express.

[31]  Hooman Mohseni,et al.  Universality of non-ohmic shunt leakage in thin-film solar cells , 2010 .

[32]  D. Jackson,et al.  Leaky‐Wave Antennas , 2008 .

[33]  Harald Giessen,et al.  3D optical Yagi–Uda nanoantenna array , 2011, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[34]  Robert Magnusson,et al.  Light management through guided-mode resonances in thin-film silicon solar cells , 2014 .

[35]  Andrea Alù,et al.  Dual-interface gratings for broadband absorption enhancement in thin-film solar cells , 2012 .

[36]  M.S. Neiman,et al.  The Principle of Reciprocity in Antenna Theory , 1943, Proceedings of the IRE.

[37]  J. Shappir,et al.  Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure. , 2013, Optics express.