Recent Developments in Superconductor Digital Electronics Technology at FLUXONICS Foundry

In Europe, the FLUXONICS Foundry develops fabrication processes and design kits for superconductor digital and mixed-signal circuits. We describe the implementation of the “European Roadmap for Superconductor Electronics” into the recent foundry process for superconductor digital electronics. Following the hierarchical cell-based design strategy, we developed a design kit with basic cells. We present experimental results of the process quality, the verified operation margins of the library cells, and the results of low- and high-speed investigations of test circuits. The process is suitable for the integration of complex digital and mixed-signal circuits for smart multichannel superconductor sensor applications with a digital interface.

[1]  H. Huggins,et al.  High quality refractory Josephson tunnel junctions utilizing thin aluminum layers , 1983 .

[2]  Shuichi Nagasawa,et al.  Development of advanced Nb process for SFQ circuits , 2004 .

[3]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[4]  Anna Y. Herr,et al.  Ultra-low-power superconductor logic , 2011, 1103.4269.

[5]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[6]  Mark W. Johnson,et al.  10 K NbN DSP module for IR sensor applications , 2001 .

[7]  S. Sarwana,et al.  Characterization of HYPRES' 4.5 kA/cm/sup 2/ & 8 kA/cm/sup 2/ Nb/AlO/sub x//Nb fabrication processes , 2005, IEEE Transactions on Applied Superconductivity.

[8]  Yoshihito Hashimoto,et al.  Method for detailed evaluation of yield of Nb josephson junctions , 2006 .

[9]  Wei Chen,et al.  Retargeting RSFQ cells to a submicron fabrication process , 2001 .

[10]  F. Wanlass,et al.  Nanowatt logic using field-effect metal-oxide semiconductor triodes , 1963 .

[11]  Yoshihito Hashimoto,et al.  Diagnostic Test of Large-Scale SFQ Shift Register , 2007, IEEE Transactions on Applied Superconductivity.

[12]  T. Ortlepp General design aspects of integrated superconductor electronics , 2009 .

[13]  O. Mukhanov,et al.  RSFQ 1024-bit shift register for acquisition memory , 1993, IEEE Transactions on Applied Superconductivity.

[14]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[15]  M. Siegel,et al.  Demonstration of digital readout circuit for superconducting nanowire single photon detector. , 2011, Optics express.

[16]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[17]  D. H. Andrews,et al.  Attenuated Superconductors I. For Measuring Infra‐Red Radiation , 1942 .

[18]  H. Terai,et al.  A single flux quantum standard logic cell library , 2002 .

[19]  Y. Yamanashi,et al.  Margin and Energy Dissipation of Adiabatic Quantum-Flux-Parametron Logic at Finite Temperature , 2013, IEEE Transactions on Applied Superconductivity.

[20]  Pascal Febvre,et al.  European roadmap on superconductive electronics – status and perspectives☆ , 2010 .

[21]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[22]  Shinya Hasuo Special Section on Recent Progress in Superconductive Digital Electronics , 2008, IEICE Trans. Electron..

[23]  Vladimir Dotsenko,et al.  Invited Paper Special Section on Recent Progress in Superconductive Digital Electronics Superconductor Digital-rf Receiver Systems , 2022 .

[24]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[25]  M. Hidaka,et al.  Fabrication process of planarized multi-layer Nb integrated circuits , 2005, IEEE Transactions on Applied Superconductivity.

[26]  Shigehito Miki,et al.  Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors , 2010 .

[27]  O. Mukhanov,et al.  First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry , 1999, IEEE Transactions on Applied Superconductivity.

[28]  Konstantin K. Likharev,et al.  Resistive Single Flux Quantum Logic for the Josephson- Junction Digital Technology , 2011 .

[29]  Vasili K. Semenov,et al.  Characterization of HYPRES' 4.5 & 8 Fabrication Processes , 2005 .

[30]  Anubhav Sahu,et al.  Implementation of energy efficient single flux quantum digital circuits with sub-aJ/bit operation , 2012, 1209.6383.

[31]  J. Kunert,et al.  Reduced Power Consumption in Superconducting Electronics , 2011, IEEE Transactions on Applied Superconductivity.

[32]  D. Amparo,et al.  20 ${\hbox{kA/cm}}^{2}$ Process Development for Superconducting Integrated Circuits With 80 GHz Clock Frequency , 2007, IEEE Transactions on Applied Superconductivity.

[33]  Erik Heinz,et al.  Time-domain multiplexed SQUID readout of a bolometer camera for APEX , 2011 .