Early Release Science of the exoplanet WASP-39b with JWST NIRCam

[1]  A. D. Feinstein,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM , 2022, Nature.

[2]  Miguel de Val-Borro,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRSpec G395H , 2022, Nature.

[3]  Megan,et al.  Early Release Science of the exoplanet WASP-39b with JWST NIRISS , 2022, Nature.

[4]  C. Keyes,et al.  Spectroscopic Time-series Performance of JWST/NIRSpec from Commissioning Observations , 2022, Publications of the Astronomical Society of the Pacific.

[5]  J. Tennyson,et al.  An ab initio study of the rovibronic spectrum of sulphur monoxide (SO): diabatic vs. adiabatic representation , 2022, Physical chemistry chemical physics : PCCP.

[6]  Tucson,et al.  Identification of carbon dioxide in an exoplanet atmosphere , 2022, Nature.

[7]  Y. Miguel,et al.  H2S and SO2 detectability in hot Jupiters. Sulphur species as indicators of metallicity and C/O ratio , 2022, Astronomy & Astrophysics.

[8]  H. Isaacson,et al.  Chemical Abundances for 25 JWST Exoplanet Host Stars with KeckSpec , 2022, Research Notes of the AAS.

[9]  Kristen B. Wymer,et al.  The Science Performance of JWST as Characterized in Commissioning , 2022, Publications of the Astronomical Society of the Pacific.

[10]  A. D. Feinstein,et al.  Eureka!: An End-to-End Pipeline for JWST Time-Series Observations , 2022, J. Open Source Softw..

[11]  T. Guillot,et al.  The Origin and Evolution of Saturn: A Post-Cassini Perspective , 2022, 2205.06914.

[12]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. IV. Capabilities and predicted performance for exoplanet characterization , 2022, Astronomy & Astrophysics.

[13]  H. Rix,et al.  The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities , 2022, Astronomy & Astrophysics.

[14]  D. Bayliss,et al.  Scintillation-limited photometry with the 20-cm NGTS telescopes at Paranal Observatory , 2021, 2111.10321.

[15]  S. Grimm,et al.  3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code , 2021, 2110.15640.

[16]  M. Min,et al.  Implementation of disequilibrium chemistry to spectral retrieval code ARCiS and application to 16 exoplanet transmission spectra Indication of disequilibrium chemistry for HD 209458b and WASP-39b , 2021, Astronomy & Astrophysics.

[17]  M. Marley,et al.  A New Sedimentation Model for Greater Cloud Diversity in Giant Exoplanets and Brown Dwarfs , 2021, The Astrophysical Journal.

[18]  J. Fortney,et al.  A solar C/O and sub-solar metallicity in a hot Jupiter atmosphere , 2021, Nature.

[19]  R. Hu Photochemistry and Spectral Characterization of Temperate and Gas-rich Exoplanets , 2021, The Astrophysical Journal.

[20]  K. Heng,et al.  A Comparative Study of Atmospheric Chemistry with VULCAN , 2021, The Astrophysical Journal.

[21]  Adam J. R. W. Smith,et al.  The Sonora Brown Dwarf Atmosphere and Evolution Models. I. Model Description and Application to Cloudless Atmospheres in Rainout Chemical Equilibrium , 2021, The Astrophysical Journal.

[22]  D. Charbonneau,et al.  The Featureless HST/WFC3 Transmission Spectrum of the Rocky Exoplanet GJ 1132b: No Evidence for a Cloud-free Primordial Atmosphere and Constraints on Starspot Contamination , 2021, The Astronomical Journal.

[23]  C. Moutou,et al.  Where Is the Water? Jupiter-like C/H Ratio but Strong H2O Depletion Found on τ Boötis b Using SPIRou , 2021, The Astronomical Journal.

[24]  Timothy D. Brandt,et al.  'exoplanet': Gradient-based probabilistic inference for exoplanet data & other astronomical time series , 2021, J. Open Source Softw..

[25]  D. Apai,et al.  ACCESS and LRG-BEASTS: A Precise New Optical Transmission Spectrum of the Ultrahot Jupiter WASP-103b , 2021, The Astronomical Journal.

[26]  K. H. Yip,et al.  ARES. V. No Evidence For Molecular Absorption in the HST WFC3 Spectrum of GJ 1132 b , 2021, The Astronomical Journal.

[27]  C. Sotin,et al.  Detection of an Atmosphere on a Rocky Exoplanet , 2021, The Astronomical Journal.

[28]  N. Madhusudhan,et al.  Sulfur chemistry in the atmospheres of warm and hot Jupiters , 2021, Monthly Notices of the Royal Astronomical Society.

[29]  J. Lothringer,et al.  A New Window into Planet Formation and Migration: Refractory-to-Volatile Elemental Ratios in Ultra-hot Jupiters , 2020, 2011.10626.

[30]  J. Lunine,et al.  The role of ice lines in the formation of Uranus and Neptune , 2020, Philosophical Transactions of the Royal Society A.

[31]  J. Leisenring,et al.  JWST Noise Floor. I. Random Error Sources in JWST NIRCam Time Series , 2020, The Astronomical Journal.

[32]  G. Tinetti,et al.  KELT-11 b: Abundances of Water and Constraints on Carbon-bearing Molecules from the Hubble Transmission Spectrum , 2020, The Astronomical Journal.

[33]  N. Lewis,et al.  A library of self-consistent simulated exoplanet atmospheres , 2020, Monthly Notices of the Royal Astronomical Society.

[34]  Laura K. McKemmish,et al.  The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2020 .

[35]  T. Henning,et al.  The Role of Clouds on the Depletion of Methane and Water Dominance in the Transmission Spectra of Irradiated Exoplanets , 2020, The Astrophysical Journal.

[36]  Iva Laginja,et al.  ExoTiC-ISM: A Python package for marginalised exoplanet transit parameters across a grid of systematic instrument models , 2020, J. Open Source Softw..

[37]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[38]  L. Buchhave,et al.  The Hubble Space Telescope PanCET Program: An Optical to Infrared Transmission Spectrum of HAT-P-32Ab , 2020, The Astronomical Journal.

[39]  T. Barman,et al.  The PHOENIX Exoplanet Retrieval Algorithm and Using H− Opacity as a Probe in Ultrahot Jupiters , 2020, The Astronomical Journal.

[40]  David J. Armstrong,et al.  Simultaneous TESS and NGTS transit observations of WASP-166 b , 2020, 2004.07589.

[41]  Pierre-Olivier Lagage,et al.  ExoTETHyS: Tools for Exoplanetary Transits around host stars , 2020, J. Open Source Softw..

[42]  Shannon T. Brown,et al.  The water abundance in Jupiter’s equatorial zone , 2020, Nature Astronomy.

[43]  N. Abraham,et al.  Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model , 2020, Astronomy & Astrophysics.

[44]  I. Gordon,et al.  An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database , 2020, The Astrophysical Journal Supplement Series.

[45]  J. Tennyson,et al.  ExoMol molecular line lists – XXXVII. Spectra of acetylene , 2020, 2001.04550.

[46]  K. Stevenson,et al.  The Exo.MAST Table for JWST Exoplanet Atmosphere Observability , 2019, Research Notes of the AAS.

[47]  F. Spiegelman,et al.  Mass–Metallicity Trends in Transiting Exoplanets from Atmospheric Abundances of H2O, Na, and K , 2019, The Astrophysical Journal.

[48]  Tobias Erhardt,et al.  emcee v3: A Python ensemble sampling toolkit for affine-invariant MCMC , 2019, J. Open Source Softw..

[49]  R. Helled,et al.  The origin of the high metallicity of close-in giant exoplanets , 2019, Astronomy & Astrophysics.

[50]  J. Tennyson,et al.  ExoMol molecular line lists – XXXV. A rotation-vibration line list for hot ammonia , 2019, Monthly Notices of the Royal Astronomical Society.

[51]  N. Madhusudhan,et al.  HyDRA-H: Simultaneous Hybrid Retrieval of Exoplanetary Emission Spectra , 2019, The Astronomical Journal.

[52]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[53]  J. Tennyson,et al.  ExoMol molecular line lists XXXVI: X 2Π – X 2Π and A 2Σ+ – X 2Π transitions of SH , 2019, Monthly Notices of the Royal Astronomical Society.

[54]  P. Lagage,et al.  The ExoTETHyS Package: Tools for Exoplanetary Transits around Host Stars , 2019, The Astronomical Journal.

[55]  T. Henning,et al.  From Cold to Hot Irradiated Gaseous Exoplanets: Fingerprints of Chemical Disequilibrium in Atmospheric Spectra , 2019, The Astrophysical Journal.

[56]  E. Agol,et al.  Analytic Planetary Transit Light Curves and Derivatives for Stars with Polynomial Limb Darkening , 2019, The Astronomical Journal.

[57]  I. Skillen,et al.  LRG-BEASTS: Transmission Spectroscopy and Retrieval Analysis of the Highly Inflated Saturn-mass Planet WASP-39b , 2019, The Astronomical Journal.

[58]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[59]  J. Fortney,et al.  A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds , 2019, Nature Astronomy.

[60]  M. Marley,et al.  Exoplanet Reflected-light Spectroscopy with PICASO , 2019, The Astrophysical Journal.

[61]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[62]  R. Brahm,et al.  juliet: a versatile modelling tool for transiting and non-transiting exoplanetary systems , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  J. Fortney,et al.  Connecting Giant Planet Atmosphere and Interior Modeling: Constraints on Atmospheric Metal Enrichment , 2018, The Astrophysical Journal.

[64]  D. Tokaryk,et al.  The spectrum of N2 from 4,500 to 15,700 cm−1 revisited with pgopher , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[65]  R. MacDonald,et al.  H2O abundances and cloud properties in ten hot giant exoplanets , 2018, Monthly Notices of the Royal Astronomical Society.

[66]  David P. Fleming,et al.  starry: Analytic Occultation Light Curves , 2018, 1810.06559.

[67]  J. Lothringer,et al.  The Effect of 3D Transport-induced Disequilibrium Carbon Chemistry on the Atmospheric Structure, Phase Curves, and Emission Spectra of Hot Jupiter HD 189733b , 2018, The Astrophysical Journal.

[68]  J. Tennyson,et al.  ExoMol molecular line lists XXX: a complete high-accuracy line list for water , 2018, Monthly Notices of the Royal Astronomical Society.

[69]  J. Tennyson,et al.  ExoMol line lists XXV: a hot line list for silicon sulphide, SiS , 2018, 1806.11177.

[70]  J. Birkby,et al.  Exoplanet Atmospheres at High Spectral Resolution , 2018, 1806.04617.

[71]  J. Tennyson,et al.  ExoMol molecular line lists – XXVII. Spectra of C2H4 , 2018, 1806.03469.

[72]  Sergei N. Yurchenko,et al.  The ExoMol Atlas of Molecular Opacities , 2018, 1805.03711.

[73]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[74]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[75]  J. Tennyson,et al.  ExoMol line lists - XXII. The rotation-vibration spectrum of silane up to 1200 K , 2017, 1712.09354.

[76]  Gregory S. Tucker,et al.  The Transiting Exoplanet Community Early Release Science Program for JWST , 2018, Publications of the Astronomical Society of the Pacific.

[77]  Nikolay Nikolov,et al.  A library of ATMO forward model transmission spectra for hot Jupiter exoplanets , 2017, 1710.10269.

[78]  I. Skillen,et al.  LRG-BEASTS III: ground-based transmission spectrum of the gas giant orbiting the cool dwarf WASP-80 , 2017, 1710.10083.

[79]  Kevin Heng,et al.  Optical properties of potential condensates in exoplanetary atmospheres , 2017, 1710.04946.

[80]  J. Tennyson,et al.  ExoMol molecular line lists - XXIII. Spectra of PO and PS , 2017, 1709.03001.

[81]  J. Hagelberg,et al.  Signs of strong Na and K absorption in the transmission spectrum of WASP-103b , 2017, 1708.05737.

[82]  Jarron Leisenring,et al.  λ = 2.4 to 5  μm spectroscopy with the James Webb Space Telescope NIRCam instrument , 2017 .

[83]  J. Tennyson,et al.  A hybrid line list for CH4 and hot methane continuum. , 2017, Astronomy and astrophysics.

[84]  Nikku Madhusudhan,et al.  On signatures of clouds in exoplanetary transit spectra , 2017, 1705.08893.

[85]  Angelos Tsiaras,et al.  High-precision Stellar Limb-darkening in Exoplanetary Transits , 2017, 1704.08232.

[86]  I. P. Waldmann,et al.  A Population Study of Gaseous Exoplanets , 2017, 1704.05413.

[87]  J. Tennyson,et al.  ExoMol molecular line lists – XX. A comprehensive line list for H3+ , 2017, 1704.04096.

[88]  Stephan Hoyer,et al.  xarray: N-D labeled arrays and datasets in Python , 2017 .

[89]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[90]  Michael R. Line,et al.  Information Content Analysis for Selection of Optimal JWST Observing Modes for Transiting Exoplanet Atmospheres , 2016, 1612.02085.

[91]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[92]  M. Ali-Dib Disentangling hot Jupiters formation location from their chemical composition , 2016, 1611.03128.

[93]  Erik Petigura,et al.  SPITZER OBSERVATIONS CONFIRM AND RESCUE THE HABITABLE-ZONE SUPER-EARTH K2-18b FOR FUTURE CHARACTERIZATION , 2016, 1610.07249.

[94]  S. Aigrain,et al.  A CONSISTENT RETRIEVAL ANALYSIS OF 10 HOT JUPITERS OBSERVED IN TRANSMISSION , 2016, 1610.01841.

[95]  T. Evans,et al.  VLT FORS2 COMPARATIVE TRANSMISSION SPECTROSCOPY: DETECTION OF Na IN THE ATMOSPHERE OF WASP-39b FROM THE GROUND , 2016, 1610.01186.

[96]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[97]  I. Baraffe,et al.  The Effects of Consistent Chemical Kinetics Calculations on the Pressure-Temperature Profiles and Emission Spectra of Hot Jupiters , 2016, 1607.04062.

[98]  A. A. Azzam,et al.  ExoMol molecular line lists - XVI: The rotation-vibration spectrum of hot H$_2$S , 2016, 1607.00499.

[99]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[100]  J. Tennyson,et al.  ExoMol molecular line lists - XVII. The rotation-vibration spectrum of hot SO3 , 2016, 1603.04065.

[101]  Gregory S. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[102]  A. Jord'an,et al.  Limb darkening and exoplanets – II. Choosing the best law for optimal retrieval of transit parameters , 2016, 1601.05485.

[103]  A. Burrows,et al.  HST HOT-JUPITER TRANSMISSION SPECTRAL SURVEY: CLEAR SKIES FOR COOL SATURN WASP-39b , 2016, 1601.04761.

[104]  M. Lendl,et al.  FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b , 2015, 1512.06698.

[105]  T. Evans,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2015, Nature.

[106]  J. Tennyson,et al.  DETECTION OF AN ATMOSPHERE AROUND THE SUPER-EARTH 55 CANCRI E , 2015, 1511.08901.

[107]  A. A. Azzam,et al.  The dipole moment surface for hydrogen sulfide H2S , 2015 .

[108]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[109]  Gilles Chabrier,et al.  FINGERING CONVECTION AND CLOUDLESS MODELS FOR COOL BROWN DWARF ATMOSPHERES , 2015, 1504.03334.

[110]  Laurence S. Rothman,et al.  ROVIBRATIONAL LINE LISTS FOR NINE ISOTOPOLOGUES OF THE CO MOLECULE IN THE X1Σ+ GROUND ELECTRONIC STATE , 2015 .

[111]  Leo C. Yorke,et al.  Exomol molecular line lists - VI. A high temperature line list for phosphorus nitride , 2014, 1504.02804.

[112]  R. Freedman,et al.  Reliable infrared line lists for 13 CO2 isotopologues up to E′=18,000 cm−1 and 1500 K, with line shape parameters , 2014 .

[113]  J. Tennyson,et al.  ExoMol line lists – VII. The rotation–vibration spectrum of phosphine up to 1500 K , 2014, 1410.2917.

[114]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[115]  Neale P. Gibson,et al.  Reliable inference of exoplanet light-curve parameters using deterministic and stochastic systematics models , 2014, 1409.5668.

[116]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[117]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  Andrea Chiavassa,et al.  The Stagger-grid: A grid of 3D stellar atmosphere models - IV. Limb darkening coefficients , 2014, 1403.3487.

[119]  Vivien Parmentier,et al.  Pseudo 2D chemical model of hot-Jupiter atmospheres: application to HD 209458b and HD 189733b , 2014, 1403.0121.

[120]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[121]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[122]  Daniel J. Frohman,et al.  ExoMol molecular line lists V: the ro-vibrational spectra of NaCl and KCl , 2013, 1403.7952.

[123]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[124]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[125]  J. Tennyson,et al.  ExoMol line lists II: The ro-vibrational spectrum of SiO , 2013, 1307.2300.

[126]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[127]  Andreas Seifahrt,et al.  TRANSMISSION SPECTROSCOPY OF THE HOT JUPITER WASP-12b FROM 0.7 TO 5 μm , 2013, 1305.1670.

[128]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[129]  Sergei N. Yurchenko,et al.  Vibrational transition moments of CH4 from first principles , 2013, 1302.1720.

[130]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[131]  P. Hauschildt,et al.  New limb-darkening coefficients for Phoenix/1d model atmospheres - II. Calculations for 5000 K ≤ Teff ≤ 10 000 K Kepler, CoRot, Spitzer, uvby, UBVRIJHK, Sloan, and 2MASS photometric systems , 2012 .

[132]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[133]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[134]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[135]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[136]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[137]  Ian D. Howarth,et al.  On stellar limb darkening and exoplanetary transits , 2011, 1106.4659.

[138]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[139]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[140]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[141]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[142]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[143]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[144]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[145]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[146]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[147]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[148]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[149]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[150]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[151]  A. Showman,et al.  Dynamics and Disequilibrium Carbon Chemistry in Hot Jupiter Atmospheres, with Application to HD 209458b , 2006, astro-ph/0602477.

[152]  R. Tolchenov,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[153]  J. Tennyson,et al.  Improved HCN/HNC linelist, model atmospheres and synthetic spectra for WZ Cas , 2005, astro-ph/0512363.

[154]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[155]  D. Saumon,et al.  Comparative Planetary Atmospheres: Models of TrES-1 and HD 209458b , 2005, astro-ph/0505359.

[156]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[157]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[158]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[159]  Peter H. Hauschildt,et al.  Irradiated planets , 2001, astro-ph/0104262.

[160]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[161]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[162]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[163]  T. Marsh THE EXTRACTION OF HIGHLY DISTORTED SPECTRA , 1989 .

[164]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[165]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[166]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[167]  A. Cameron,et al.  Abundances of the elements in the solar system , 1973 .

[168]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[169]  Jwst NIRCam Early Release Science of the exoplanet WASP-39b with JWST NIRCam , 2023 .

[170]  B. Brewer Nested Sampling , 2022, The SAGE Encyclopedia of Research Design.

[171]  P. Bernath MoLLIST: Molecular Line Lists, Intensities and Spectra , 2020 .

[172]  R. Pudritz,et al.  Connecting planet formation and astrochemistry A main sequence for C/O in hot-exoplanetary atmospheres , 2019 .

[173]  J. Blecic,et al.  Equilibrium chemistry down to 100 K Impact of silicates and phyllosilicates on the carbon to oxygen ratio , 2018 .

[174]  P. Hajigeorgiou,et al.  Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI , 2015 .

[175]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[176]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[177]  Bruce Fegley,et al.  The Planetary Scientist's Companion , 1998 .

[178]  U. Fink,et al.  The infrared spectrum of Jupiter. , 1976 .