Mutational equations in metric spaces

This paper summarizes an extension of differential calculus to a mutational calculus for maps from one metric space to another. The simple idea is to replace half-lines allowing to define difference quotients of maps and their various limits in the case of vector space by ‘transitions’ with which we can also define differential quotients of a map. Their various limits are called ‘mutations’ of a map. Many results of differential calculus and set-valued analysis, including the Inverse Function Theorem, do not really rely on the linear structure and can be adapted to the nonlinear case of metric spaces and exploited. Furthermore, the concept of differential equation can be extended tomutational equation governing the evolution in metric spaces. Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschitz Theorem, the Center Manifold Theorem and the second Lyapunov Method hold true for mutational equations.This work was motivated by evolution equations of ‘tubes’ in ‘visual servoing’ on one hand, mathematical morphology on the other, when the metric spaces are ‘power spaces’. This paper begins by listing some consequences of general theorems concerning ‘mutational equations for tubes’.

[1]  H. Frankowska,et al.  Inclusions aux dérivées partielles gouvernant des contrôles de rétroaction , 1990 .

[2]  F. Clarke Generalized gradients and applications , 1975 .

[3]  R. Rockafellar Extensions of subgradient calculus with applications to optimization , 1985 .

[4]  H. Frankowska The maximum principle for a differential inclusion problem , 1984 .

[5]  S Amari,et al.  A theory on the determination of 3D motion and 3D structure from features. , 1987, Spatial vision.

[6]  A. I. Panasyuk Dynamics of sets defined by differential inclusions , 1986 .

[7]  J. Aubin,et al.  Contingent solutions to the center manifold equation , 1992 .

[8]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[9]  G. Matheron Random Sets and Integral Geometry , 1976 .

[10]  H. Frankowska,et al.  A priori estimates for operational differential inclusions , 1990 .

[11]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[12]  On the Set-Valued Calculus in Problems of Viability and Control for Dynamic Processes: The Evolution Equation , 1989 .

[13]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[14]  Funnel Equations and Multivalued Integration Problems for Control Synthesis , 1990 .

[15]  R. Rockafellar Proto-Differentiability of Set-Valued Mappings and its Applications in Optimization☆ , 1989 .

[16]  M. Delfour,et al.  Shape sensitivity analysis via a penalization method , 1988 .

[17]  H. Frankowska Local controllability and infinitesimal generators of semigroups of set-valued maps , 1987 .

[18]  H. Banks,et al.  A Differential Calculus for Multifunctions , 1970 .

[19]  F. S. De Blasi,et al.  On the differentiability of multifunctions , 1976 .

[20]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[21]  R. Rockafellar,et al.  Lipschitzian properties of multifunctions , 1985 .

[22]  L. Doyen Inverse Function Theorems and Shape Optimization , 1994 .

[23]  J. Aubin Contingent Derivatives of Set-Valued Maps and Existence of Solutions to Nonlinear Inclusions and Differential Inclusions. , 1980 .

[24]  J. Aubin,et al.  Hyperbolic systems of partial differential inclusions , 1991 .

[25]  A. Panasyuk Equations of attainable set dynamics, part 1: Integral funnel equations , 1990 .

[26]  Alexander B. Kurzhanski,et al.  Set valued solutions to control problems and their approximations , 1988 .

[27]  A. Panasyuk Equations of attainable set dynamics, part 2: Partial differential equations , 1990 .

[28]  A. I. Panasyuk,et al.  An equation generated by a differential inclusion , 1980 .

[29]  H. Frankowska,et al.  Systèmes hyperboliques d'inclusions aux dérivées partielles , 1991 .

[30]  Michel C. Delfour,et al.  Shape sensitivity analysis via min max differentiability , 1988 .

[31]  J. Mattioli Relations différentielles d'opérations de la morphologie mathématique , 1993 .

[32]  H. Frankowska Some inverse mapping theorems , 1990 .

[33]  Juliette Mattioli,et al.  Inverse Problems for Granulometries by Erosion , 1992 .

[34]  Juliette Mattioli,et al.  Differential inclusions for mathematical morphology , 1993, Optics & Photonics.

[35]  Michel C. Delfour,et al.  Structure of shape derivatives for nonsmooth domains , 1992 .

[36]  G. Pianigiani,et al.  Differential inclusions in Banach spaces , 1987 .

[37]  Qualitative dynamics of sets defined by differential inclusions , 1989 .

[38]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .