Extrapolated Shock Tracking: Bridging shock-fitting and embedded boundary methods

Abstract We propose a novel approach to approximate numerically shock waves. The method combines the unstructured shock-fitting approach developed in the last decade by some of the authors, with ideas coming from embedded boundary techniques. The numerical method obtained allows avoiding the re-meshing phase required by the unstructured fitting method, while guaranteeing accuracy properties very close to those of the fitting approach. This new method has many similarities with front tracking approaches, and paves the way to shock-tracking techniques truly independent on the data and mesh structure used by the flow solver. The approach is tested on several problems showing accuracy properties very close to those of more expensive fitting methods, with a considerable gain in flexibility and generality.

[1]  Renato Paciorri,et al.  An unstructured, three-dimensional, shock-fitting solver for hypersonic flows , 2013 .

[2]  Renato Paciorri,et al.  A mass-matrix formulation of unsteady fluctuation splitting schemes consistent with Roe’s parameter vector , 2013 .

[3]  X. Wang,et al.  High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium , 2011, J. Comput. Phys..

[5]  Philip L. Roe,et al.  A frontal approach for internal node generation in Delaunay triangulations , 1993 .

[6]  Aldo Bonfiglioli,et al.  Numerical simulation of hypersonic flows past three-dimensional blunt bodies through a unstructured shock-fitting solver , 2011 .

[7]  Ting Song,et al.  The shifted boundary method for hyperbolic systems: Embedded domain computations of linear waves and shallow water flows , 2018, J. Comput. Phys..

[8]  Andrea Lani,et al.  SF: An Open Source Object-Oriented Platform for Unstructured Shock-Fitting Methods , 2017 .

[9]  R. Marsilio,et al.  Shock-fitting method for two-dimensional inviscid, steady supersonic flows in ducts , 1989 .

[10]  Guglielmo Scovazzi,et al.  The Shifted Interface Method: A flexible approach to embedded interface computations , 2019, International Journal for Numerical Methods in Engineering.

[11]  Rémi Abgrall,et al.  High order methods for CFD , 2017 .

[12]  Jiaying Liu,et al.  An adaptive discontinuity fitting technique on unstructured dynamic grids , 2019, Shock Waves.

[13]  M. Sergio Campobasso,et al.  Ad-Hoc Boundary Conditions for CFD Analyses of Turbomachinery Problems With Strong Flow Gradients at Farfield Boundaries , 2011 .

[14]  Philip L. Roe,et al.  Shock Capturing Anomalies and the Jump Conditions in One Dimension , 2011 .

[15]  Alex Main,et al.  The shifted boundary method for embedded domain computations. Part I: Poisson and Stokes problems , 2017, J. Comput. Phys..

[16]  T. A. D. Roquefort,et al.  Numerical investigation of a three-dimensional turbulent shock/shock interaction , 1998 .

[17]  Jun Liu,et al.  A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes , 2017, J. Comput. Phys..

[18]  L. Heltai,et al.  A finite element approach to the immersed boundary method , 2003 .

[19]  Rémi Abgrall,et al.  An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques , 2014, J. Comput. Phys..

[20]  Francesco Nasuti,et al.  Analysis of unsteady supersonic viscous flows by a shock-fitting technique , 1996 .

[21]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[22]  F. Nasuti A Multi-Block Shock-Fitting Technique to Solve Steady and Unsteady Compressible Flows , 2003 .

[23]  Renato Paciorri,et al.  Unsteady shock‐fitting for unstructured grids , 2016 .

[24]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[25]  A. Bonfiglioli,et al.  Convergence Analysis of Shock-Capturing and Shock-Fitting Solutions on Unstructured Grids , 2014 .

[26]  V. Guinot Approximate Riemann Solvers , 2010 .

[27]  Tomas Bengtsson,et al.  Fictitious domain methods using cut elements : III . A stabilized Nitsche method for Stokes ’ problem , 2012 .

[28]  Andrew Corrigan,et al.  A moving discontinuous Galerkin finite element method for flows with interfaces , 2018, International Journal for Numerical Methods in Fluids.

[29]  Renato Paciorri,et al.  A shock-fitting technique for 2D unstructured grids , 2009 .

[30]  Frédéric Alauzet,et al.  Time-accurate multi-scale anisotropic mesh adaptation for unsteady flows in CFD , 2018, J. Comput. Phys..

[31]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[32]  D. Bonhaus,et al.  A higher order accurate finite element method for viscous compressible flows , 1999 .

[33]  Renato Paciorri,et al.  An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium , 2015, Comput. Phys. Commun..

[34]  Alex Main,et al.  The shifted boundary method for embedded domain computations. Part II: Linear advection-diffusion and incompressible Navier-Stokes equations , 2018, J. Comput. Phys..

[35]  Mario Ricchiuto,et al.  High-order gradients with the shifted boundary method: An embedded enriched mixed formulation for elliptic PDEs , 2019, J. Comput. Phys..

[36]  J. Glimm,et al.  Front-Tracking Methods , 2016 .

[37]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[38]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[39]  Renato Paciorri,et al.  Accurate detection of shock waves and shock interactions in two-dimensional shock-capturing solutions , 2020, J. Comput. Phys..

[40]  Mikhail S. Ivanov,et al.  Computation of weak steady shock reflections by means of an unstructured shock-fitting solver , 2010 .

[41]  Charbel Farhat,et al.  A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..

[42]  Aldo Bonfiglioli,et al.  Fluctuation Splitting Schemes for the Compressible and Incompressible Euler and Navier-Stokes Equations , 2000 .

[43]  Herman Deconinck,et al.  Residual Distribution Schemes: Foundations and Analysis , 2007 .

[44]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[45]  Rémi Abgrall,et al.  An adaptive, residual based, splitting approach for the penalized Navier Stokes equations , 2016 .

[46]  Renato Paciorri,et al.  Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique , 2011, J. Comput. Phys..

[47]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .