Complexity in the living : a modelistic approach

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Recurrence Quantification Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Mathematical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Bioinformatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Other Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

[1]  S Karlin,et al.  Patchiness and correlations in DNA sequences , 1993, Science.

[2]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[3]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[4]  A. Giuliani,et al.  Recurrence quantification analysis of the logistic equation with transients , 1996 .

[5]  D. Ruelle,et al.  Recurrence Plots of Dynamical Systems , 1987 .

[6]  W Bains,et al.  Using bioinformatics in drug discovery. , 1996, Trends in biotechnology.

[7]  Wentian Li,et al.  The Study of Correlation Structures of DNA Sequences: A Critical Review , 1997, Comput. Chem..

[8]  J. Zbilut,et al.  Embeddings and delays as derived from quantification of recurrence plots , 1992 .

[9]  W. Ebeling,et al.  From Instability to Intelligence. Complexity and Predictability in Nonlinear Dynamics , 1999 .

[10]  Alessandro Giuliani,et al.  A Markovian formalization of heart rate dynamics evinces a quantum-like hypothesis , 1996, Biological Cybernetics.

[11]  L. Liebovitch,et al.  Fractal Activity in Cell Membrane Ion Channels a , 1990, Annals of the New York Academy of Sciences.

[12]  D Benton,et al.  Bioinformatics--principles and potential of a new multidisciplinary tool. , 1996, Trends in biotechnology.

[13]  Charles L. Webber,et al.  Lumbar paraspinal muscle fatigability in repetitive isoinertial loading: EMG spectral indices, Borg scale and endurance time , 1997, European Journal of Applied Physiology and Occupational Physiology.

[14]  S. Cukierman,et al.  Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes. , 1991, Biophysical journal.

[15]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[16]  Michael F. Shlesinger,et al.  Perspectives in biological dynamics and theoretical medicine. , 1987, Annals of the New York Academy of Sciences.

[17]  T. Südhof,et al.  Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. , 1990, The Journal of biological chemistry.

[18]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[19]  M P Eckstein,et al.  Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  小林 孝雄,et al.  Burton G.Malkiel:A Random Walk Down Wall Street , 1986 .

[21]  F. Takens Detecting strange attractors in turbulence , 1981 .

[22]  M. Riley,et al.  IN FRACTAL PHYSIOLOGY , 2022 .

[23]  C L Webber,et al.  Dynamical assessment of physiological systems and states using recurrence plot strategies. , 1994, Journal of applied physiology.

[24]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[25]  Charles L. Webber,et al.  Assessing Deterministic Structures in Physiological Systems Using Recurrence Plot Strategies , 1996 .

[26]  B. LeBaron,et al.  Nonlinear Dynamics and Stock Returns , 2021, Cycles and Chaos in Economic Equilibrium.

[27]  M B Jackson,et al.  Single‐Channel Recording , 1998, Current protocols in neuroscience.

[28]  K. Magleby,et al.  Two-dimensional components and hidden dependencies provide insight into ion channel gating mechanisms. , 1997, Biophysical journal.

[29]  C L Webber,et al.  Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools. , 1995, Journal of applied physiology.

[30]  D. Richter,et al.  A Three Phase Theory About the Basic Respiratory Pattern Generator , 1983 .

[31]  A. Malliani,et al.  Heart rate variability. Standards of measurement, physiological interpretation, and clinical use , 1996 .

[32]  Sweden. Sekretariatet för framtidsstudier,et al.  Beyond Belief: Randomness, Prediction and Explanation in Science , 1990 .

[33]  G. Mayer-Kress,et al.  Use of recurrence plots in the analysis of heart beat intervals , 1990, [1990] Proceedings Computers in Cardiology.