An extremal property of the fifo discipline via an ordinal version of

[1]  J. Little A Proof for the Queuing Formula: L = λW , 1961 .

[2]  Sلأren Asmussen,et al.  Applied Probability and Queues , 1989 .

[3]  Genji Yamazaki,et al.  An optimal design problem for limited processor sharing systems , 1987 .

[4]  Benjamin Avi-Itzhak,et al.  Expected Response Times in a Non-Symmetric Time Sharing Queue with a Limited Number of Service Positions , 1988 .

[5]  B. Sengupta,et al.  Sojourn time distribution in a multiprogrammed computer system , 1985, AT&T Technical Journal.

[6]  Daniel P. Heyman,et al.  Stochastic models in operations research , 1982 .

[7]  J Keilson,et al.  M/G/∞ With Batch Arrivals , 2018 .

[8]  Ward Whitt,et al.  Extensions of the Queueing Relations L = λW and H = λG , 1989, Oper. Res..

[9]  Shaler Stidham,et al.  Technical Note - A Last Word on L = λW , 1974, Oper. Res..

[10]  V. Ramaswami THE SOJOURN TIME IN THE GI/M/1 QUEUE , 1984 .

[11]  Ward Whitt,et al.  A central-limit-theorem version ofL=λw , 1986, Queueing Syst. Theory Appl..

[12]  Benjamin Avi-Itzhak,et al.  Server sharing with a limited number of service positions and symmetric queues , 1987 .

[13]  Ronald W. Wolff,et al.  Poisson Arrivals See Time Averages , 1982, Oper. Res..

[14]  J. Shanthikumar,et al.  Convex ordering of sojourn times in single-server queues: extremal properties of FIFO and LIFO service disciplines , 1987, Journal of Applied Probability.

[15]  Ward Whitt,et al.  Deciding Which Queue to Join: Some Counterexamples , 1986, Oper. Res..

[16]  S. Stidham Sample-Path Analysis of Queues , 1982 .

[17]  Ward Whitt,et al.  Comparison methods for queues and other stochastic models , 1986 .