Single-Crystal Casting/Directional Solidification

[1]  W. Mirihanage,et al.  Computational Modeling of Columnar to Equiaxed Transition in Alloy Solidification , 2013 .

[2]  Pradeep Kumar Jha,et al.  Developments in investment casting process—A review , 2012 .

[3]  Jincheng Wang,et al.  Competitive grain growth in directional solidification investigated by phase field simulation , 2012 .

[4]  Peter D. Lee,et al.  A new mechanism for freckle initiation based on microstructural level simulation , 2012 .

[5]  Xionggang Lu,et al.  Influence of spiral crystal selector on crystal orientation of single crystal superalloy , 2012 .

[6]  Zushu Hu,et al.  Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame , 2012 .

[7]  H. Fu,et al.  Grain Selection During Casting Ni-Base, Single-Crystal Superalloys with Spiral Grain Selector , 2012, Metallurgical and Materials Transactions A.

[8]  H. Dai,et al.  Grain Selection in Spiral Selectors During Investment Casting of Single-Crystal Turbine Blades: Part I. Experimental Investigation , 2011 .

[9]  R. Reed,et al.  Grain Selection in Spiral Selectors During Investment Casting of Single-Crystal Components: Part II. Numerical Modeling , 2011 .

[10]  Z. Hu,et al.  Evolution of Grain Selection in Spiral Selector during Directional Solidification of Nickel-base Superalloys , 2011 .

[11]  Peter D. Lee,et al.  Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation , 2010 .

[12]  G. Fuchs,et al.  The Effect of Secondary Gamma-Prime on the Primary Creep Behavior of Single-Crystal Nickel-Base Superalloys , 2010 .

[13]  T. Pollock,et al.  Crack Progression during Sustained-Peak Low-Cycle Fatigue in Single-Crystal Ni-Base Superalloy René N5 , 2010 .

[14]  R. Reed,et al.  Alloys-By-Design: Application to nickel-based single crystal superalloys , 2009 .

[15]  J. Gebelin,et al.  Effect of spiral shape on grain selection during casting of single crystal turbine blades , 2009 .

[16]  Huijuan Dai,et al.  A Study of Solidification Structure Evolution during Investment Casting of Ni-based Superalloy for Aero-Engine Turbine Blades. , 2009 .

[17]  Hui Juan Dai,et al.  Grain Selection During Solidification in Spiral Grain Selector , 2008 .

[18]  Yi-zhou Zhou,et al.  Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy , 2008 .

[19]  H. Atkinson,et al.  Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification - The Effect of Nucleation Undercooling, Density of Nuclei in Bulk Liquid and Alloy Solidification Range on the Transition , 2008 .

[20]  M. Suk,et al.  Dendrite spacing and microstructure evolution dependent on specimen history , 2007 .

[21]  R. Reed The Superalloys: Fundamentals and Applications , 2006 .

[22]  T. Pollock,et al.  Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties , 2006 .

[23]  M. Tamura,et al.  Analysis of single crystal casting process taking into account the shape of pigtail , 2005 .

[24]  N. D’Souza,et al.  Role of dendrite branching and growth kinetics in the formation of low angle boundaries in Ni–base superalloys , 2005 .

[25]  P. Lee,et al.  Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth , 2005 .

[26]  R. Singer,et al.  Influence of solidification conditions on the castability of nickel-base superalloy IN792 , 2005 .

[27]  Peter D. Lee,et al.  Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys , 2005 .

[28]  Hongbiao Dong,et al.  Microscale simulation of stray grain formation in investment cast turbine blades , 2004 .

[29]  Toshiharu Kobayashi,et al.  Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction , 2004 .

[30]  B. Shollock,et al.  Grain structure development in directional solidification of nickel-base superalloys , 2004 .

[31]  Peter D. Lee,et al.  A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection , 2003 .

[32]  C. Yuan,et al.  Advances in shell moulding for investment casting , 2003 .

[33]  Christoph Beckermann,et al.  Modelling of macrosegregation: applications and future needs , 2002 .

[34]  Christoph Beckermann,et al.  Free Dendritic Growth of Succinonitrile-Acetone Alloys with Thermosolutal Melt Convection , 2002 .

[35]  B. Shollock,et al.  Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4 , 2002 .

[36]  R. Reed,et al.  The precipitation of topologically close-packed phases in rhenium-containing superalloys , 2001 .

[37]  M. Mohammadzadeh,et al.  Directional solidification of Ni base superalloy IN738LC to improve creep properties , 2000 .

[38]  R. Napolitano,et al.  The convergence-fault mechanism for low-angle boundary formation in single-crystal castings , 2000 .

[39]  C. Gandin,et al.  Process modelling of grain selection during the solidification of single crystal superalloy castings , 2000 .

[40]  C. Gandin,et al.  A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures , 1999 .

[41]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[42]  C. Beckermann,et al.  Dendrite tip growth velocities of settling NH4Cl equiaxed crystals , 1997 .

[43]  J. Hunt,et al.  Numerical modeling of cellular/dendritic array growth: spacing and structure predictions , 1996 .

[44]  M. Rappaz,et al.  3-Dimensional simulation of the grain formation in investment castings , 1994 .

[45]  C. Gandin,et al.  Probabilistic modelling of microstructure formation in solidification processes , 1993 .

[46]  W. Kurz,et al.  Fundamentals of Solidification , 1990 .

[47]  S. C. Flood,et al.  Columnar and equiaxed growth: II. Equiaxed growth ahead of a columnar front , 1987 .

[48]  G. J. S. Higginbotham,et al.  From research to cost-effective directional solidification and single-crystal production – an integrated approach , 1986 .

[49]  J. Hunt,et al.  Steady state columnar and equiaxed growth of dendrites and eutectic , 1984 .

[50]  F. W. Wood,et al.  PRODUCTION OF TITANIUM CASTINGS , 1955 .

[51]  R. Prim,et al.  The Distribution of Solute in Crystals Grown from the Melt. Part I. Theoretical , 1953 .

[52]  W. Tiller,et al.  The redistribution of solute atoms during the solidification of metals , 1953 .

[53]  R. Reed,et al.  AN ANALYSIS OF SOLIDIFICATION PATH IN THE NI-BASE SUPERALLOY, CMSX10K , 2008 .

[54]  B. Shollock,et al.  Seeding of single crystal superalloys: role of seed melt-back on casting defects , 2004 .

[55]  Wei Wang A mathematical model of dendritic microstructures in nickel-based superalloys , 2003 .

[56]  Christoph Beckermann,et al.  CONVECTION EFFECTS IN THREE-DIMENSIONAL DENDRITIC GROWTH , 2001 .

[57]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .

[58]  D. G. McCartney,et al.  Numerical finite difference model for steady state cellular array growth , 1987 .

[59]  M. McLean,et al.  Directionally Solidified Materials for High Temperature Service , 1984 .

[60]  R. Arthey,et al.  Cost Effective Single Crystals , 1984 .

[61]  G. J. Davies Solidification and casting , 1973 .