Degeneracy in maximal clique decomposition for Semidefinite Programs
暂无分享,去创建一个
[1] Katsuki Fujisawa,et al. Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..
[2] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[3] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[4] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[5] E. D. Klerk,et al. Aspects of semidefinite programming : interior point algorithms and selected applications , 2002 .
[6] Masakazu Kojima,et al. Exploiting Sparsity in SDP Relaxation of Polynomial Optimization Problems , 2012 .
[7] Makoto Yamashita,et al. A high-performance software package for semidefinite programs: SDPA 7 , 2010 .
[8] Anton van den Hengel,et al. Semidefinite Programming , 2014, Computer Vision, A Reference Guide.
[9] David P. Williamson,et al. .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.
[10] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[11] Kim-Chuan Toh,et al. SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .
[12] Masakazu Kojima,et al. Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..
[13] Michael L. Overton,et al. Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..
[14] Makoto Yamashita,et al. Fast implementation for semidefinite programs with positive matrix completion , 2015, Optim. Methods Softw..
[15] Kim-Chuan Toh,et al. Solving Large Scale Semidefinite Programs via an Iterative Solver on the Augmented Systems , 2003, SIAM J. Optim..
[16] Kazuo Murota,et al. Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..