Coalitional Tracking in Facial Infrared Imaging and Beyond

We propose a novel facial tracking method that uses a distributed network of individual trackers whose interactions are modeled using coalitional game theory. Our tracking method maintains a high level of accuracy and can negotiate surface deformations and occlusions. We tested the method on a substantial video set featuring non-trivial face motion from over 40 subjects in both the infrared and visual spectra. The coalitional tracker demonstrated fault tolerant behavior that exceeds by far the performance of single condensation trackers. Our method represents a shift from the typical tracking paradigms and may find broader application in demanding imaging problems across the electromagnetic spectrum.

[1]  Wolfgang Leiniger,et al.  Games and information: An introduction to game theory: Eric Rasmusen, (Basil Blackwell, Oxford, 1989) , 1991 .

[2]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[3]  Ioannis Pavlidis,et al.  Seeing through the face of deception , 2002, Nature.

[4]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  W. Clem Karl,et al.  Real-time tracking using level sets , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Jin Fei,et al.  Imaging Breathing Rate in the CO2Absorption Band , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[7]  Anatol Rapoport,et al.  N-person game theory;: Concepts and applications , 1970 .

[8]  Rashid Ansari,et al.  Multiple object tracking with kernel particle filter , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[9]  M. A. Quintela,et al.  Defect assessment on radiant heaters using infrared thermography , 2005 .

[10]  S. Griffis EDITOR , 1997, Journal of Navigation.

[11]  Jorge Stolfi,et al.  Outlier Rejection in Deformable Model Tracking , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[12]  Ying Wu,et al.  Analyzing and capturing articulated hand motion in image sequences , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  T. Başar,et al.  Stochastic and differential games : theory and numerical methods , 1999 .

[14]  Timothy C. G. Fisher,et al.  Managerial Economics: A Game Theoretic Approach , 2002 .

[15]  D. Marc Kilgour Game Theory and Political Theory: An Introduction Peter C. Ordeshook Cambridge: Cambridge University Press 1986, pp. xv, 511 , 1988 .

[16]  Michael Isard,et al.  ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework , 1998, ECCV.

[17]  P. Ekman,et al.  Lie Detection-Recovery of the Periorbital Signal through Tandem Tracking and Noise Suppression in Thermal Facial Video , 2005 .

[18]  Ying Wu,et al.  Decentralized multiple target tracking using netted collaborative autonomous trackers , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Marc Garbey,et al.  Imaging the cardiovascular pulse , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[20]  S.J. Krotosky,et al.  Face detection and head tracking using stereo and thermal infrared cameras for "smart" airbags: a comparative analysis , 2004, Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749).

[21]  Christian Schmidt,et al.  Game theory and economic analysis : a quiet revolution in economics , 2002 .

[22]  E. Rasmusen Games and Information: An Introduction to Game Theory , 2006 .

[23]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2000, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[24]  Ioannis Pavlidis,et al.  The face of fear , 2001 .

[25]  Lawrence B. Wolff,et al.  Tracking human faces in infrared video , 2003, Image Vis. Comput..

[26]  M. S. Burrell Computer vision for high-speed, high-volume manufacturing , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[27]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[28]  Milan Mareš Fuzzy Cooperative Games , 2001 .

[29]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[30]  Ioannis Pavlidis,et al.  Urban surveillance systems: from the laboratory to the commercial world , 2001, Proc. IEEE.

[31]  Sergiu Hart,et al.  Cooperation: Game-Theoretic Approaches , 2012, NATO ASI Series.

[32]  Marc Garbey,et al.  Estimation of blood flow speed and vessel location from thermal video , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[33]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[34]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[35]  Jean-Christophe Olivo-Marin,et al.  Coupled parametric active contours , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Michael Isard,et al.  Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking , 2000, ECCV.

[37]  I. Pavlidis,et al.  Thermal image analysis for polygraph testing. , 2002, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.