A LATIN-based model reduction approach for the simulation of cycling damage

The objective of this article is to introduce a new method including model order reduction for the life prediction of structures subjected to cycling damage. Contrary to classical incremental schemes for damage computation, a non-incremental technique, the LATIN method, is used herein as a solution framework. This approach allows to introduce a PGD model reduction technique which leads to a drastic reduction of the computational cost. The proposed framework is exemplified for structures subjected to cyclic loading, where damage is considered to be isotropic and micro-defect closure effects are taken into account. A difficulty herein for the use of the LATIN method comes from the state laws which can not be transformed into linear relations through an internal variable transformation. A specific treatment of this issue is introduced in this work.

[1]  Icíar Alfaro,et al.  Computational vademecums for the real-time simulation of haptic collision between nonlinear solids , 2015 .

[2]  David Néron,et al.  Multiparametric analysis within the proper generalized decomposition framework , 2012 .

[3]  E. A. de Souza Neto,et al.  Computational methods for plasticity , 2008 .

[4]  Manuel Doblaré,et al.  A PGD-based multiscale formulation for non-linear solid mechanics under small deformations , 2016 .

[5]  Pierre Ladevèze,et al.  PGD in linear and nonlinear Computational Solid Mechanics , 2014 .

[6]  Jean Lemaitre,et al.  Coupled elasto-plasticity and damage constitutive equations , 1985 .

[7]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[8]  D. Cojocaru,et al.  A simple numerical method of cycle jumps for cyclically loaded structures , 2006 .

[9]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[10]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[11]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[12]  P. Bussy,et al.  Plastic and viscoplastic damage models with numerical treatment for metal forming processes , 1998 .

[13]  Amine Ammar,et al.  The proper generalized decomposition for the simulation of delamination using cohesive zone model , 2014 .

[14]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[15]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[16]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[17]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[18]  Pierre Ladevèze,et al.  Proper Generalized Decomposition computational methods on a benchmark problem: introducing a new strategy based on Constitutive Relation Error minimization , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[19]  Pierre Ladevèze,et al.  On reduced models in nonlinear solid mechanics , 2016 .

[20]  Gianluigi Rozza,et al.  Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity , 2005 .

[21]  David Néron,et al.  Multiscale elastic-viscoplastic computational analysis , 2011 .

[22]  Axel Ruhe Numerical aspects of gram-schmidt orthogonalization of vectors , 1983 .

[23]  Francisco Chinesta,et al.  On the space-time separated representation of integral linear viscoelastic models , 2015 .

[24]  Tajeddine Guennouni Sur une méthode de calcul de structures soumises à des chargements cycliques : l'homogénéisation en temps , 1988 .

[25]  Optimal control approach in nonlinear mechanics , 2008 .

[26]  Jean Lemaitre,et al.  A two scale damage concept applied to fatigue , 1999 .

[27]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[28]  Karl Kunisch,et al.  POD-based feedback control of the burgers equation by solving the evolutionary HJB equation , 2005 .

[29]  P Kerfriden,et al.  Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems. , 2011, Computer methods in applied mechanics and engineering.

[30]  Fredrik Larsson,et al.  On the variationally consistent computational homogenization of elasticity in the incompressible limit , 2015, Adv. Model. Simul. Eng. Sci..

[31]  Pierre Ladevèze,et al.  On multiscale computational mechanics with time-space homogenization , 2008 .

[32]  Elías Cueto,et al.  Real‐time monitoring of thermal processes by reduced‐order modeling , 2015 .

[33]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[34]  David Ryckelynck,et al.  A robust adaptive model reduction method for damage simulations , 2011 .

[35]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[36]  Sumio Murakami,et al.  Continuum Damage Mechanics , 2012 .

[37]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[38]  Pierre Ladevèze,et al.  The Reference Point Method, a ``hyperreduction'' technique: Application to PGD-based nonlinear model reduction , 2017 .

[39]  Juan Galvis,et al.  Spectral multiscale finite element for nonlinear flows in highly heterogeneous media: A reduced basis approach , 2014, J. Comput. Appl. Math..

[40]  David Néron,et al.  A model reduction technique based on the PGD for elastic-viscoplastic computational analysis , 2013 .

[41]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[42]  David Néron,et al.  Time‐space PGD for the rapid solution of 3D nonlinear parametrized problems in the many‐query context , 2015 .

[43]  Yvon Maday,et al.  The Reduced Basis Element Method: Application to a Thermal Fin Problem , 2004, SIAM J. Sci. Comput..

[44]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[45]  Jean-Jacques Thomas,et al.  Détermination de la réponse asymptotique d'une structure anélastique sous chargement thermomécanique cyclique , 2002 .

[46]  P. Ladevèze,et al.  A large time increment approach for cyclic viscoplasticity , 1993 .

[47]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .