Derandomizing Arthur-Merlin Games using Hitting Sets

Abstract.We prove that AM (and hence Graph Nonisomorphism) is in NP if for some ε > 0, some language in NE ∩ coNE requires nondeterministic circuits of size 2ε n This improves results of Arvind and Köbler and of Klivans and van Melkebeek who proved the same conclusion, but under stronger hardness assumptions.The previous results on derandomizing AM were based on pseudorandom generators. In contrast, our approach is based on a strengthening of Andreev, Clementi and Rolim’s hitting set approach to derandomization. As a spin-off, we show that this approach is strong enough to give an easy proof of the following implication: for some ε > 0, if there is a language in E which requires nondeterministic circuits of size 2ε n , then P = BPP. This differs from Impagliazzo and Wigderson’s theorem “only” by replacing deterministic circuits with nondeterministic ones.

[1]  Aravind Srinivasan,et al.  Explicit OR-dispersers with polylogarithmic degree , 1998, JACM.

[2]  Silvio Micali,et al.  Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems , 1991, JACM.

[3]  Dieter van Melkebeek Derandomizing Arthur-Merlin Games , 1998 .

[4]  Peter Bro Miltersen,et al.  Super-Polynomial Versus Half-Exponential Circuit Size in the Exponential Hierarchy , 1999, COCOON.

[5]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[6]  Bernd Grobauer,et al.  The Second Futamura Projection for Type-Directed Partial Evaluation , 1999, PEPM '00.

[7]  Christopher Umans,et al.  Pseudorandomness for Approximate Counting and Sampling , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[8]  Oded Goldreich,et al.  On Completeness and Soundness in Interactive Proof Systems , 1989, Adv. Comput. Res..

[9]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[10]  Luca Trevisan,et al.  Extractors and pseudorandom generators , 2001, JACM.

[11]  José D. P. Rolim,et al.  Worst-Case Hardness Suffices for Derandomization: A New Method for Hardness-Randomness Trade-offs , 1997, Theoretical Computer Science.

[12]  László Babai,et al.  Computational complexity and the classification of finite simple groups , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[13]  Christopher Umans,et al.  Simple extractors for all min-entropies and a new pseudo-random generator , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[14]  José D. P. Rolim,et al.  Hitting Sets Derandomize BPP , 1996, ICALP.

[15]  Lance Fortnow,et al.  One-sided Versus Two-sided Error in Probabilistic Computation , 1999, STACS.

[16]  Robert J. Townsley,et al.  What is a Good? , 1999 .

[17]  Peter Bro Miltersen,et al.  Derandomizing Arthur-Merlin Games using Hitting Sets , 1999 .

[18]  José D. P. Rolim,et al.  Weak random sources, hitting sets, and BPP simulations , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[19]  Chi-Jen Lu Derandomizing Arthur—Merlin games under uniform assumptions , 2001, computational complexity.

[20]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[21]  László Babai Bounded Round Interactive Proofs in Finite Groups , 1992, SIAM J. Discret. Math..

[22]  Benjamin C. Pierce,et al.  Decoding Choice Encodings , 1996, Inf. Comput..

[23]  Valentine Kabanets Easiness Assumptions and Hardness Tests: Trading Time for Zero Error , 2001, J. Comput. Syst. Sci..

[24]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[25]  Dieter van Melkebeek,et al.  Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses , 2002, SIAM J. Comput..

[26]  José D. P. Rolim,et al.  A new general derandomization method , 1998, JACM.

[27]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2002, J. Comput. Syst. Sci..

[28]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[29]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[30]  Amnon Ta-Shma Almost Optimal Dispersers , 2002, Comb..

[31]  Aravind Srinivasan,et al.  Explicit dispersers with polylog degree , 1995, STOC '95.

[32]  Luca Trevisan,et al.  Constructions of Near-Optimal Extractors Using Pseudo-Random Generators , 1998, Electron. Colloquium Comput. Complex..

[33]  Michael Sipser,et al.  Expanders, Randomness, or Time versus Space , 1988, Journal of computer and system sciences (Print).

[34]  José L. Balcázar,et al.  Structural Complexity II , 2012, EATCS.

[35]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[36]  Peter Bro Miltersen Error correcting codes, perfect hashing circuits, and deterministic dynamic dictionaries , 1998, SODA '98.

[37]  Uwe Nestmann What is a "Good" Encoding of Guarded Choice? , 2000, Inf. Comput..

[38]  Avi Wigderson,et al.  Near-optimal conversion of hardness into pseudo-randomness , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[39]  Josva Kleist,et al.  Aliasing Models for Mobile Objects , 1999, Inf. Comput..

[40]  Leonid A. Levin,et al.  A hard-core predicate for all one-way functions , 1989, STOC '89.

[41]  Noam Nisan,et al.  BPP has subexponential time simulations unless EXPTIME has publishable proofs , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[42]  Christopher B. Wilson Relativized circuit complexity , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[43]  José D. P. Rolim,et al.  Hitting Properties of Hard Boolean Operators and their Consequences on BPP , 1996, Electron. Colloquium Comput. Complex..

[44]  Kåre J. Kristoffersen,et al.  Verification of State/Event Systems by Quotienting , 1999 .

[45]  Salil P. Vadhan,et al.  Derandomization in Cryptography , 2003, SIAM J. Comput..

[46]  Avi Wigderson,et al.  Extractors and pseudo-random generators with optimal seed length , 2000, STOC '00.

[47]  Amnon Ta-Shma,et al.  Uniform hardness versus randomness tradeoffs for Arthur-Merlin games , 2003, computational complexity.

[48]  Peter Bro Miltersen Derandomizing Complexity Classes , 2001 .

[49]  Dieter van Melkebeek,et al.  Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses , 1999, STOC '99.

[50]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[51]  Shafi Goldwasser,et al.  Private coins versus public coins in interactive proof systems , 1986, STOC '86.

[52]  Amnon Ta-Shma,et al.  Loss-less condensers, unbalanced expanders, and extractors , 2001, STOC '01.

[53]  Vikraman Arvind,et al.  On pseudorandomness and resource-bounded measure , 2001, Theor. Comput. Sci..

[54]  Russell Impagliazzo,et al.  Hard-core distributions for somewhat hard problems , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[55]  Christopher Umans Pseudo-random generators for all hardnesses , 2002, STOC '02.

[56]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[57]  V. Arvind,et al.  On Resource-Bounded Measure and Pseudorandomness , 1997, FSTTCS.

[58]  Alan L. Selman Much ado about functions , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[59]  Peter Bro Miltersen,et al.  Derandomizing Arthur–Merlin Games using Hitting Sets , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).