A search for accreting young companions embedded in circumstellar disks

Context. In recent years, our understanding of giant planet formation progressed substantially. There have even been detections of a few young protoplanet candidates still embedded in the circumstellar disks of their host stars. The exact physics that describes the accretion of material from the circumstellar disk onto the suspected circumplanetary disk and eventually onto the young, forming planet is still an open question. Aims. We seek to detect and quantify observables related to accretion processes occurring locally in circumstellar disks, which could be attributed to young forming planets. We focus on objects known to host protoplanet candidates and/or disk structures thought to be the result of interactions with planets. Methods. We analyzed observations of six young stars (age 3.5–10 Myr) and their surrounding environments with the SPHERE/ZIMPOL instrument on the Very Large Telescope (VLT) in the Hα filter (656 nm) and a nearby continuum filter (644.9 nm). We applied several point spread function (PSF) subtraction techniques to reach the highest possible contrast near the primary star, specifically investigating regions where forming companions were claimed or have been suggested based on observed disk morphology. Results. We redetect the known accreting M-star companion HD142527 B with the highest published signal to noise to date in both Hα and the continuum. We derive new astrometry (r=62.8−2.7+2.1 mas and PA=(98.7±1.8)°) and photometry (ΔN_Ha = 6.3−0.3+0.2 mag, ΔB_Ha = 6.7 ± 0.2 mag and ΔCnt_Ha = 7.3−0.2+0.3 mag) for the companion in agreement with previous studies, and estimate its mass accretion rate (Ṁ ≈ 1−2 × 10−10 M⊙yr−1). A faint point-like source around HD135344 B (SAO206462) is also investigated, but a second deeper observation is required to reveal its nature. No other companions are detected. In the framework of our assumptions we estimate detection limits at the locations of companion candidates around HD100546, HD169142, and MWC 758 and calculate that processes involving Hα fluxes larger than ~ 8 × 10−14–10−15 erg s−1 cm−2 (Ṁ > 10−10−10−12 M⊙yr−1) can be excluded. Furthermore, flux upper limits of ~10−14−10−15 erg s−1 cm−2 (Ṁ < 10−11–10−12 M⊙yr−1) are estimated within the gaps identified in the disks surrounding HD135344 B and TW Hya. The derived luminosity limits exclude Hα signatures at levels similar to those previously detected for the accreting planet candidate LkCa15 b.

Julien H. Girard | A. Vigan | University of Michigan | R. Roelfsema | P. Feautrier | Y. Magnard | P. Baudoz | E. Hugot | M. Langlois | S. Desidera | J. Milli | Z. Wahhaj | S. P. Quanz | G. Chauvin | F. Rigal | C. Pinte | C. Dominik | A.-M. Lagrange | University of Amsterdam | M. Bonnefoy | A.-L. Maire | M. Janson | J. Hagelberg | T. Stolker | M. Feldt | Leiden Observatory | J. Pragt | A. J. Bohn | C. Ginski | Universitat Bern | J. H. Girard | H. M. Schmid | LESIA | R. van Boekel | H. Avenhaus | University of Zurich | R. Gratton | M. Meyer | A. Cheetham | F. Menard | U. Michigan | E. Hugot | J. Milli | P. Baudoz | J. Girard | A. Maire | G. Chauvin | A. Lagrange | M. Bonnefoy | S. Quanz | M. Meyer | M. Feldt | P. Feautrier | R. Gratton | M. Langlois | J. Pragt | F. Rigal | R. Roelfsema | H. Schmid | M. Janson | F. Ménard | S. Desidera | C. Dominik | Y. Magnard | A. Vigan | E. Chile | U. Chile | L. Observatory | J. Hagelberg | C. Mordasini | C. Pinte | U. Zurich | U. Amsterdam | S. University | R. Boekel | Z. Wahhaj | Lesia | E. Buenzli | E. Buenzli | J. Szul'agyi | Universidad de Chile | C. Mordasini | A. Bohn | C. Ginski | A. Cheetham | G. V. D. Plas | H. Avenhaus | S. University | J. Szul'agyi | T. Stolker | G. Cugno | S. Hunziker | A. Z. E. Zurich | M. P. I. Heidelberg | U. Grenoble | Geneva Observatory | Osservatorio Astronomico di Padova | Marseille Universit'e | C. Lyon | Cnrs Grenoble | Universitat Bern | M. University | Nova | U. D. Portales | Stockholm University | C. Mordasini | G. Cugno | ESO Santiago de Chile | G. van der Plas | S. Hunziker | A. Zurlo ETH Zurich | Max Planck Institute Heidelberg | Univ. Grenoble | Geneva Observatory | Marseille Universit'e | CNRS Lyon | CNRS Grenoble | Monash University | NOVA | Universidad Diego Portales | Eso - Chile | U. Bern | G. Observatory | M. Meyer | C. Grenoble

[1]  G. Chauvin,et al.  Searching for Hα emitting sources around MWC 758 - SPHERE/ZIMPOL high-contrast imaging, , 2018, 1803.09264.

[2]  G. Blake,et al.  Imaging the Disk around TW Hydrae with the Submillimeter Array , 2004, astro-ph/0403412.

[3]  J. Szulágyi,et al.  The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert? , 2017, 1710.06485.

[4]  L. Testi,et al.  X-shooter spectroscopy of young stellar objects. IV. Accretion in low-mass stars and substellar objects in Lupus , 2013, 1310.2069.

[5]  A. Burrows,et al.  RESOLVING THE HD 100546 PROTOPLANETARY SYSTEM WITH THE GEMINI PLANET IMAGER: EVIDENCE FOR MULTIPLE FORMING, ACCRETING PLANETS , 2015, 1511.02526.

[6]  Michael C. Liu,et al.  A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS , 2011, 1109.5693.

[7]  D. Wilner,et al.  MILLIMETER OBSERVATIONS OF THE TRANSITION DISK AROUND HD 135344B (SAO 206462) , 2011, 1108.5840.

[8]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[9]  P. Tuthill,et al.  The protoplanetary system HD 100546 in H α polarized light from SPHERE/ZIMPOL: A bar-like structure across the disk gap? , 2017, 1711.00023.

[10]  Kjetil Dohlen,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[11]  Hst/nicmos2 coronagraphic observations of the circumstellar environment of three old pms stars: hd 100546, sao 206462 and mwc 480 , 2000, astro-ph/0009496.

[12]  T. Henning,et al.  HD 135344B: a young star has reached its rotational limit , 2011, 1103.5484.

[13]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[14]  N. Calvet,et al.  The Structure and Emission of the Accretion Shock in T Tauri Stars , 1998 .

[15]  Heidelberg,et al.  The Planetary Accretion Shock. I. Framework for Radiation-hydrodynamical Simulations and First Results , 2017, 1701.02747.

[16]  H. Canovas,et al.  Near-infrared imaging polarimetry of HD142527 ?;?? , 2013, 1306.6379.

[17]  Sascha P. Quanz,et al.  PynPoint code for exoplanet imaging , 2014, Astron. Comput..

[18]  C. A. Grady,et al.  SPIRAL ARMS IN THE ASYMMETRICALLY ILLUMINATED DISK OF MWC 758 AND CONSTRAINTS ON GIANT PLANETS , 2012, 1212.1466.

[19]  Laird M. Close,et al.  AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK, , 2014, 1408.0794.

[20]  C. Marois,et al.  Confidence Level and Sensitivity Limits in High-Contrast Imaging , 2007, 0709.3548.

[21]  M. Min,et al.  Shadows cast on the transition disk of HD 135344B: Multiwavelength VLT/SPHERE polarimetric differential imaging , 2016, 1603.00481.

[22]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[23]  Timothy D. Brandt,et al.  Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk , 2017, 1707.06337.

[24]  Luca Ricci,et al.  RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.

[25]  Frantz Martinache,et al.  Probing dusty circumstellar environments with polarimetric aperture-masking interferometry , 2012, Other Conferences.

[26]  Michiel Lambrechts,et al.  Rapid growth of gas-giant cores by pebble accretion , 2012, 1205.3030.

[27]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[28]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[29]  J. Mathis Interstellar dust and extinction , 1987 .

[30]  Nuria Calvet,et al.  Magnetospheric accretion models for T Tauri stars. 1: Balmer line profiles without rotation , 1994 .

[31]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[32]  David Mouillet,et al.  The SPHERE XAO system: design and performance , 2008, Astronomical Telescopes + Instrumentation.

[33]  Laird M. Close,et al.  Into the blue: AO science with MagAO in the visible , 2014, Astronomical Telescopes and Instrumentation.

[34]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[35]  A. Amara,et al.  CONFIRMATION AND CHARACTERIZATION OF THE PROTOPLANET HD 100546 b—DIRECT EVIDENCE FOR GAS GIANT PLANET FORMATION AT 50 AU , 2014, 1412.5173.

[36]  Laird M. Close,et al.  MagAO: status and science , 2016, Astronomical Telescopes + Instrumentation.

[37]  Sascha P. Quanz,et al.  NIR SPECTROSCOPY OF THE HAeBe STAR HD 100546. III. FURTHER EVIDENCE OF AN ORBITING COMPANION? , 2014, 1409.0804.

[38]  E. Serabyn,et al.  Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758 , 2017, 1710.11393.

[39]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[40]  Kjetil Dohlen,et al.  SPHERE IRDIS and IFS astrometric strategy and calibration , 2016, Astronomical Telescopes + Instrumentation.

[41]  Saeko S. Hayashi,et al.  Near-Infrared Images of Protoplanetary Disk Surrounding HD 142527 , 2006 .

[42]  J. Carpenter,et al.  The Complex Morphology of the Young Disk MWC 758: Spirals and Dust Clumps around a Large Cavity , 2017, 1712.08845.

[43]  Beth Biller,et al.  A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527 , 2012, 1206.2654.

[44]  A. Juhász,et al.  ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546 , 2014, 1405.6542.

[45]  E. Bergin,et al.  A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296 , 2018, The Astrophysical Journal.

[46]  C. Mordasini,et al.  Thermodynamics of giant planet formation: shocking hot surfaces on circumplanetary discs , 2016, 1609.08652.

[47]  D. Fantinel,et al.  Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 , 2018, Astronomy & Astrophysics.

[48]  Jason J. Wang,et al.  An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO , 2017, 1704.06317.

[49]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.

[50]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[51]  Julien H. Girard,et al.  A YOUNG PROTOPLANET CANDIDATE EMBEDDED IN THE CIRCUMSTELLAR DISK OF HD 100546 , 2013, 1302.7122.

[52]  U. Exeter,et al.  INDIRECT DETECTION OF FORMING PROTOPLANETS VIA CHEMICAL ASYMMETRIES IN DISKS , 2015, 1505.07470.

[53]  U. A. D. Madrid,et al.  VORTICES AND SPIRALS IN THE HD 135344B TRANSITION DISK , 2016, 1607.05775.

[54]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[55]  S. Quanz,et al.  High signal-to-noise spectral characterization of the planetary-mass object HD 106906 b , 2017, 1708.05747.

[56]  C. Mordasini,et al.  Characterization of exoplanets from their formation III: The statistics of planetary luminosities , 2017, 1708.00868.

[57]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[58]  T. Fusco,et al.  SPHERE/ZIMPOL high resolution polarimetric imager , 2018, Astronomy & Astrophysics.

[59]  S. Quanz,et al.  HD100546 MULTI-EPOCH SCATTERED LIGHT OBSERVATIONS , 2014, 1405.6120.

[60]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[61]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[62]  Andreas Quirrenbach,et al.  The Disk and Environment of a Young Vega Analog: HD 169142 , 2007 .

[63]  T. Prusti,et al.  Ruling out unresolved binaries in five transitional disks - VLT/NACO deep 2.12 and 1.75 μm narrow-band imaging , 2011, 1107.3141.

[64]  C. A. Grady,et al.  DISCOVERY OF A DISK GAP CANDIDATE AT 20 AU IN TW HYDRAE , 2015, 1503.01856.

[65]  Zhaohuan Zhu,et al.  CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations , 2018, 1801.03948.

[66]  A. Skemer,et al.  Accreting protoplanets in the LkCa 15 transition disk , 2015, Nature.

[67]  S. Quanz,et al.  IMAGING THE INNER AND OUTER GAPS OF THE PRE-TRANSITIONAL DISK OF HD 169142 AT 7 mm , 2014, 1407.6549.

[68]  Laird M. Close,et al.  Magellan Adaptive Optics Imaging of PDS 70: Measuring the Mass Accretion Rate of a Young Giant Planet within a Gapped Disk , 2018, The Astrophysical Journal Letters.

[69]  L. Hartmann,et al.  Disk Accretion Rates for T Tauri Stars , 1998 .

[70]  A. Boss,et al.  DISTANCE AND KINEMATICS OF THE TW HYDRAE ASSOCIATION FROM PARALLAXES , 2012, 1211.2233.

[71]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[72]  J. Fairlamb,et al.  A spectroscopic survey of Herbig Ae/Be stars with X-shooter – I. Stellar parameters and accretion rates , 2015, 1507.05967.

[73]  T. Henning,et al.  Star and Protoplanetary Disk Properties in Orion's Suburbs , 2009, 0907.2380.

[74]  J. A. Eisner,et al.  SPECTRAL ENERGY DISTRIBUTIONS OF ACCRETING PROTOPLANETS , 2015, 1502.05412.

[75]  Near-IR integral-field spectroscopy of the companion to GQ Lup , 2006, astro-ph/0612250.

[76]  Caltech,et al.  Very Low Mass Stars and Brown Dwarfs in Taurus-Auriga , 2002, astro-ph/0209164.

[77]  Elvira Covino,et al.  X-shooter spectroscopy of young stellar objects: I - Mass accretion rates of low-mass T Tauri stars in \sigma Orionis , 2012, 1209.5799.

[78]  K. Menou,et al.  DISK-FED GIANT PLANET FORMATION , 2016, 1602.02781.

[79]  Julien H. Girard,et al.  Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE , 2016, 1610.08939.

[80]  Dmitry Savransky,et al.  Complex Spiral Structure in the HD 100546 Transitional Disk as Revealed by GPI and MagAO , 2017, 1704.06260.

[81]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[82]  M. Benisty,et al.  Gas and dust structures in protoplanetary disks hosting multiple planets , 2014, 1410.5963.

[83]  Jonathan P. Williams,et al.  Observations of Herbig Ae/Be stars with Herschel/PACS , 2012 .

[84]  Local Enhancement of the Surface Density in the Protoplanetary Ring Surrounding HD 142527 , 2013, 1309.7400.

[85]  T. Fusco,et al.  Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging , 2017, 1702.05108.

[86]  S. Wolf,et al.  HD 169142 in the eyes of ZIMPOL/SPHERE , 2017, 1711.09040.

[87]  Adam L. Kraus,et al.  ACCRETION ONTO PLANETARY MASS COMPANIONS OF LOW-MASS YOUNG STARS , 2014, 1401.6545.

[88]  Julien H. Girard,et al.  Characterization of low-mass companion HD 142527 B , 2018, Astronomy & Astrophysics.

[89]  Esther Buenzli,et al.  Small vs. large dust grains in transitional disks: do different cavity sizes indicate a planet? - SAO 206462 (HD 135344B) in polarized light with VLT/NACO , 2013, 1311.4195.

[90]  J. Pineda,et al.  RESOLVED IMAGES OF THE PROTOPLANETARY DISK AROUND HD 100546 WITH ALMA , 2014, 1405.5773.

[91]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[92]  Zhaohuan Zhu,et al.  ACCRETING CIRCUMPLANETARY DISKS: OBSERVATIONAL SIGNATURES , 2014, 1408.6554.

[93]  Julien H. Girard,et al.  SPHERE/ZIMPOL observations of the symbiotic system R Aquarii - I. Imaging of the stellar binary and the innermost jet clouds , 2017, 1703.05624.

[94]  Joel H. Kastner,et al.  PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER , 2015, 1512.01865.

[95]  Observability of forming planets and their circumplanetary discs – I. Parameter study for ALMA , 2017, 1709.04438.

[96]  Tomas Stolker,et al.  PynPoint: a modular pipeline architecture for processing and analysis of high-contrast imaging data , 2018, Astronomy & Astrophysics.

[97]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[98]  L. Close,et al.  Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion , 2014, 1407.7041.

[99]  Julien H. Girard,et al.  Investigation of the inner structures around HD 169142 with VLT/SPHERE , 2017, 1709.01734.

[100]  A. J. Weinberger,et al.  THE 0.5–2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU , 2013, 1306.2969.

[101]  Dimitri Mawet,et al.  DISCOVERY OF A COMPANION CANDIDATE IN THE HD 169142 TRANSITION DISK AND THE POSSIBILITY OF MULTIPLE PLANET FORMATION , 2014, 1408.0813.

[102]  P. Rojo,et al.  A library of near-infrared integral field spectra of young M–L dwarfs , 2013, 1306.3709.

[103]  Daniel J. Price,et al.  Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc , 2018, 1803.02484.

[104]  Daniel J. Price,et al.  Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk , 2018, The Astrophysical Journal.

[105]  Heidelberg,et al.  VERY LARGE TELESCOPE/NACO POLARIMETRIC DIFFERENTIAL IMAGING OF HD100546—DISK STRUCTURE AND DUST GRAIN PROPERTIES BETWEEN 10 AND 140 AU , 2011, 1106.1101.

[106]  Greg W. Doppmann,et al.  HIGH-RESOLUTION NEAR-INFRARED SPECTROSCOPY OF HD 100546. II. ANALYSIS OF VARIABLE ROVIBRATIONAL CO EMISSION LINES , 2013, 1311.5647.

[107]  Catherine Espaillat,et al.  RESOLVED IMAGES OF LARGE CAVITIES IN PROTOPLANETARY TRANSITION DISKS , 2011, 1103.0284.

[108]  T. Fusco,et al.  SAXO, the SPHERE extreme AO system: on-sky final performance and future improvements , 2016, Astronomical Telescopes + Instrumentation.

[109]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[110]  R. Briguglio,et al.  DISCOVERY OF Hα EMISSION FROM THE CLOSE COMPANION INSIDE THE GAP OF TRANSITIONAL DISK HD 142527 , 2014, 1401.1273.

[111]  Astronomy,et al.  ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets , 2017, 1702.02844.

[112]  I. Gavignaud,et al.  Optical atmospheric extinction over Cerro Paranal , 2010, 1011.6156.

[113]  Pablo E. Román,et al.  PLANET FORMATION SIGNPOSTS: OBSERVABILITY OF CIRCUMPLANETARY DISKS VIA GAS KINEMATICS , 2015, 1505.06808.

[114]  Julien H. Girard,et al.  An M-dwarf star in the transition disk of Herbig HD 142527: physical parameters and orbital elements. , 2015, 1511.09390.

[115]  Julien H. Girard,et al.  Exploring Dust around HD 142527 down to 0.″025 (4 au) Using SPHERE/ZIMPOL , 2017, 1705.09680.

[116]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[117]  Steward Observatory,et al.  GAPS IN THE HD 169142 PROTOPLANETARY DISK REVEALED BY POLARIMETRIC IMAGING: SIGNS OF ONGOING PLANET FORMATION? , 2013, 1302.3029.

[118]  Lisa Poyneer,et al.  The Gemini Planet Imager , 2006, SPIE Astronomical Telescopes + Instrumentation.

[119]  Adam Amara,et al.  PYNPOINT: An image processing package for finding exoplanets , 2012, 1207.6637.

[120]  Sascha P. Quanz,et al.  STRUCTURES IN THE PROTOPLANETARY DISK OF HD142527 SEEN IN POLARIZED SCATTERED LIGHT , 2013, 1311.7088.