Retraction Note to: A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

The Editor-in-Chief has retracted this article [1] because validity of the content of this article cannot be verified. This article showed evidence of peer review and authorship manipulation.

[1]  Yousef A.G. Abdalla,et al.  New Correlations of Global Solar Radiation with Meteorological Parameters for Bahrain , 1994 .

[2]  F. A. Ogbu,et al.  The importance of maximum air temperature in the parameterisation of solar radiation in Nigeria , 1995 .

[3]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[4]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[5]  L. Mora-López,et al.  Multiplicative ARMA models to generate hourly series of global irradiation , 1998 .

[6]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[7]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[8]  Andrew H. Sung,et al.  Monitoring System Security Using Neural Networks and Support Vector Machines , 2001, HIS.

[9]  Andrew H. Sung,et al.  Intrusion detection using neural networks and support vector machines , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[10]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[11]  A.H. Sung,et al.  Identifying important features for intrusion detection using support vector machines and neural networks , 2003, 2003 Symposium on Applications and the Internet, 2003. Proceedings..

[12]  Wei-Zhen Lu,et al.  Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. , 2005, Chemosphere.

[13]  B. Rudolf,et al.  World Map of the Köppen-Geiger climate classification updated , 2006 .

[14]  Mac McKee,et al.  Multi-time scale stream flow predictions: The support vector machines approach , 2006 .

[15]  T. A. Sharif,et al.  Estimation of monthly average solar radiation in Libya , 2006 .

[16]  J. Mubiru,et al.  Assessing the performance of global solar radiation empirical formulations in Kampala, Uganda , 2007 .

[17]  J. Mubiru,et al.  Performance of empirical correlations for predicting monthly mean daily diffuse solar radiation values at Kampala, Uganda , 2007 .

[18]  E. Tulcan-Paulescu,et al.  Fuzzy modelling of solar irradiation using air temperature data , 2008 .

[19]  T.-L. Lee,et al.  Support vector regression methodology for storm surge predictions , 2008 .

[20]  Jamshid Piri,et al.  Comparison of LLR, MLP, Elman, NNARX and ANFIS Models―with a case study in solar radiation estimation , 2009 .

[21]  Michael R. Lyu,et al.  Localized support vector regression for time series prediction , 2009, Neurocomputing.

[22]  Sheng-De Wang,et al.  Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space , 2009, Pattern Recognit..

[23]  S. C. Kaushik,et al.  Assessment of diffuse solar energy under general sky condition using artificial neural network , 2009 .

[24]  O. Şenkal,et al.  Estimation of solar radiation over Turkey using artificial neural network and satellite data , 2009 .

[25]  S. Kalogirou Solar Energy Engineering: Processes and Systems , 2009 .

[26]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[27]  C. K. Chan,et al.  Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN , 2011 .

[28]  Ming Li,et al.  Estimating daily global solar radiation during the growing season in Northeast China using the Ångström–Prescott model , 2012, Theoretical and Applied Climatology.

[29]  De-ti Xie,et al.  Estimation of monthly solar radiation from measured temperatures using support vector machines – A case study , 2011 .

[30]  Muammer Ozgoren,et al.  Estimation of global solar radiation using ANN over Turkey , 2012, Expert Syst. Appl..

[31]  Cyril Voyant,et al.  Numerical Weather Prediction (NWP) and hybrid ARMA/ANN model to predict global radiation , 2012, ArXiv.

[32]  Mario Kusek,et al.  A self-optimizing mobile network: Auto-tuning the network with firefly-synchronized agents , 2012, Inf. Sci..

[33]  Turan Paksoy,et al.  A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey , 2012 .

[34]  Sara Saeidi Ramiyani,et al.  A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran , 2013 .

[35]  John Boland,et al.  Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model , 2013 .

[36]  Taher Niknam,et al.  An Adaptive Modified Firefly Optimisation Algorithm based on Hong's Point Estimate Method to optimal operation management in a microgrid with consideration of uncertainties , 2013 .

[37]  Shiliang Sun,et al.  A survey of multi-view machine learning , 2013, Neural Computing and Applications.

[38]  Jilong Chen,et al.  Evaluation of support vector machine for estimation of solar radiation from measured meteorological variables , 2014, Theoretical and Applied Climatology.

[39]  O. S. Sastry,et al.  Estimation of solar radiation using a combination of Hidden Markov Model and generalized Fuzzy model , 2013 .

[40]  David Pozo-Vázquez,et al.  An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images , 2013 .

[41]  A. Mellit,et al.  A simplified calibrated model for estimating daily global solar radiation in Madinah, Saudi Arabia , 2014, Theoretical and Applied Climatology.

[42]  Rolf T. Wigand,et al.  Community Detection in Complex Networks: Multi-objective Enhanced Firefly Algorithm , 2013, Knowl. Based Syst..

[43]  Shiliang Sun,et al.  Multitask multiclass support vector machines: Model and experiments , 2013, Pattern Recognit..

[44]  N. Poursalehi,et al.  Continuous firefly algorithm applied to PWR core pattern enhancement , 2013 .

[45]  Hongbin Liu,et al.  General models for estimating daily global solar radiation for different solar radiation zones in mainland China , 2013 .

[46]  Amit Kumar Yadav,et al.  Solar radiation prediction using Artificial Neural Network techniques: A review , 2014 .

[47]  Yu Zhang,et al.  Prediction of solar radiation with genetic approach combing multi-model framework , 2014 .

[48]  Dawei Han,et al.  A hybrid modelling approach for assessing solar radiation , 2015, Theoretical and Applied Climatology.

[49]  Gilles Notton,et al.  Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model , 2014 .

[50]  Sancho Salcedo-Sanz,et al.  Daily global solar radiation prediction based on a hybrid Coral Reefs Optimization – Extreme Learning Machine approach , 2014 .

[51]  Ozgur Kisi,et al.  Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach , 2014 .

[52]  Christian A. Gueymard,et al.  A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects , 2014 .

[53]  Abdullah Gani,et al.  Wind turbine power coefficient estimation by soft computing methodologies: Comparative study , 2014 .

[54]  Bijaya K. Panigrahi,et al.  A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission , 2014, Neurocomputing.

[55]  M. Russo,et al.  Genetic programming for photovoltaic plant output forecasting , 2014 .

[56]  Mat Kiah M.L.,et al.  Wind turbine power coefficient estimation by soft computing methodologies: Comparative study , 2014 .

[57]  Majid Jamil,et al.  Fuzzy logic based modeling and estimation of global solar energy using meteorological parameters , 2014 .

[58]  Shahaboddin Shamshirband,et al.  Potential of radial basis function based support vector regression for global solar radiation prediction , 2014 .

[59]  Dalibor Petković,et al.  Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year , 2015 .

[60]  H. Karam,et al.  Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil , 2016, Theoretical and Applied Climatology.

[61]  Kasra Mohammadi,et al.  A support vector machine–firefly algorithm-based model for global solar radiation prediction , 2015 .

[62]  C. W. Tong,et al.  A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation , 2015 .

[63]  Khubaib Amjad Alam,et al.  Support vector regression based prediction of global solar radiation on a horizontal surface , 2015 .

[64]  Angelika Bayer,et al.  Solar Engineering Of Thermal Processes , 2016 .