Superhedging and Dynamic Risk Measures Under Volatility Uncertainty

We consider dynamic sublinear expectations (i.e., time-consistent coherent risk measures) whose scenario sets consist of singular measures corresponding to a general form of volatility uncertainty. We derive a c\`adl\`ag nonlinear martingale which is also the value process of a superhedging problem. The superhedging strategy is obtained from a representation similar to the optional decomposition. Furthermore, we prove an optional sampling theorem for the nonlinear martingale and characterize it as the solution of a second order backward SDE. The uniqueness of dynamic extensions of static sublinear expectations is also studied.

[1]  H. M. Soner,et al.  Martingale Representation Theorem for the G-Expectation , 2010, 1001.3802.

[2]  Some Estimates for Martingale Representation under G-Expectation , 2010, 1004.1098.

[3]  Shige Peng,et al.  Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths , 2008, 0802.1240.

[4]  Marcel Nutz Pathwise construction of stochastic integrals , 2011, 1108.2981.

[5]  Yongsheng Song,et al.  Some properties on G-evaluation and its applications to G-martingale decomposition , 2010, 1001.2802.

[6]  Magali Kervarec,et al.  Dynamic risk measuring under model uncertainty: taking advantage of the hidden probability measure , 2010 .

[7]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[8]  R. Karandikar On pathwise stochastic integration , 1995 .

[9]  S. Peng Nonlinear Expectations and Stochastic Calculus under Uncertainty , 2010, Probability Theory and Stochastic Modelling.

[10]  Ioannis Karatzas,et al.  Optimal arbitrage under model uncertainty. , 2011, 1202.2999.

[11]  Shige Peng,et al.  NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS , 2005 .

[12]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[13]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[14]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[15]  Shige Peng,et al.  Stopping times and related Itô's calculus with G-Brownian motion , 2009, 0910.3871.

[16]  Walter Schachermayer,et al.  The Mathematics of Arbitrage , 2006 .

[17]  H. Soner,et al.  Dual Formulation of Second Order Target Problems , 2010, 1003.6050.

[18]  Terry Lyons,et al.  Uncertain volatility and the risk-free synthesis of derivatives , 1995 .

[19]  J. Jacod,et al.  étude des solutions extrémales et représentation intégrale des solutions pour certains problèmes de martingales , 1977 .

[20]  L. Denis,et al.  A THEORETICAL FRAMEWORK FOR THE PRICING OF CONTINGENT CLAIMS IN THE PRESENCE OF MODEL UNCERTAINTY , 2006, math/0607111.

[21]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[22]  H. Soner,et al.  Quasi-sure Stochastic Analysis through Aggregation , 2010, 1003.4431.

[23]  S. Peng G -Expectation, G -Brownian Motion and Related Stochastic Calculus of Itô Type , 2006, math/0601035.

[24]  S. Peng Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation , 2006, math/0601699.

[25]  Marcel Nutz,et al.  Random G-expectations. , 2010, 1009.2168.

[26]  N. Karoui Les Aspects Probabilistes Du Controle Stochastique , 1981 .

[27]  Nizar Touzi,et al.  Wellposedness of second order backward SDEs , 2010, 1003.6053.

[28]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[29]  Bo Zhang,et al.  Martingale characterization of G-Brownian motion , 2009 .

[30]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[31]  S. Peng Backward Stochastic Differential Equation, Nonlinear Expectation and Their Applications , 2011 .

[32]  Terry J. Lyons,et al.  Stochastic finance. an introduction in discrete time , 2004 .

[33]  K. Bichteler,et al.  Stochastic Integration and $L^p$-Theory of Semimartingales , 1981 .

[34]  Marcel Nutz,et al.  A Quasi-Sure Approach to the Control of Non-Markovian Stochastic Differential Equations , 2011, ArXiv.

[35]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[36]  Magali Kervarec,et al.  Risk measuring under model uncertainty , 2010 .

[37]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .