Comparisons between model equations for long waves

SummaryConsidered here are model equations for weakly nonlinear and dispersive long waves, which feature general forms of dispersion and pure power nonlinearity. Two variants of such equations are introduced, one of Korteweg-de Vries type and one of regularized long-wave type. It is proven that solutions of the pure initial-value problem for these two types of model equations are the same, to within the order of accuracy attributable to either, on the long time scale during which nonlinear and dispersive effects may accumulate to make an order-one relative difference to the wave profiles.

[1]  Jerry L. Bona,et al.  An initial- and boundary-value problem for a model equation for propagation of long waves , 1980 .

[2]  L. R. Scott,et al.  An evaluation of a model equation for water waves , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Douglas N. Arnold,et al.  A superconvergent finite element method for the Korteweg-de Vries equation , 1982 .

[4]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Alan C. Newell,et al.  Nonlinear wave motion , 1974 .

[6]  L. Hörmander Linear Partial Differential Operators , 1963 .

[7]  D. Peregrine Calculations of the development of an undular bore , 1966, Journal of Fluid Mechanics.

[8]  Ragnar Winther,et al.  A conservative finite element method for the Korteweg-de Vries equation , 1980 .

[9]  L. R. Scott,et al.  A Comparison of Solutions of Two Model Equations for Long Waves. , 1983 .

[10]  J. Hammack A note on tsunamis: their generation and propagation in an ocean of uniform depth , 1973, Journal of Fluid Mechanics.

[11]  N. J. Zabusky,et al.  Shallow-water waves, the Korteweg-deVries equation and solitons , 1971, Journal of Fluid Mechanics.

[12]  H. Segur,et al.  The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments , 1974, Journal of Fluid Mechanics.

[13]  Ragnar Winther,et al.  The Korteweg–de Vries Equation, Posed in a Quarter-Plane , 1983 .

[14]  J. Bona,et al.  Nonlocal models for nonlinear, dispersive waves , 1990 .

[15]  J. Bona,et al.  Fully discrete galerkin methods for the korteweg-de vries equation☆ , 1986 .

[16]  J. E. Chappelear,et al.  Shallow‐water waves , 1962 .

[17]  J. Saut Quelques généralisations de l'équation de Korteweg-de Vries, II , 1979 .

[18]  Ohannes A. Karakashian,et al.  Convergence of Galerkin Approximations for the Korteweg-de Vries Equation, , 1983 .

[19]  T. Benjamin Internal waves of permanent form in fluids of great depth , 1967, Journal of Fluid Mechanics.

[20]  Jerry L. Bona,et al.  A mathematical model for long waves generated by wavemakers in non-linear dispersive systems , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Ohannes A. Karakashian,et al.  On some high-order accurate fully discrete Galerkin methods for the Korteweg-de Vries equation , 1985 .

[22]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[23]  S. Lang,et al.  Partial Differential Operators , 1985 .

[24]  T. Kubota,et al.  Weakly-Nonlinear, Long Internal Gravity Waves in Stratified Fluids of Finite Depth , 1978 .

[25]  M. Kruskal,et al.  Nonlinear wave equations , 1975 .

[26]  J. Bona,et al.  The Korteweg-de Vries equation in a quarter plane, continuous dependence results , 1989, Differential and Integral Equations.