Denoising, separation and localization of EEG sources in the context of epilepsy

Electroencephalography (EEG) is a routinely used technique for the diagnosis and management of epilepsy. In this context, the objective of this thesis consists in providing algorithms for the extraction, separation, and localization of epileptic sources from the EEG recordings. In the first part of the thesis, we consider two preprocessing steps applied to raw EEG data. The first step aims at removing muscle artifacts by means of Independent Component Analysis (ICA). In this context, we propose a new semi-algebraic deflation algorithm that extracts the epileptic sources more efficiently than conventional methods as we demonstrate on simulated and real EEG data. The second step consists in separating correlated sources that can be involved in the propagation of epileptic phenomena. To this end, we explore deterministic tensor decomposition methods exploiting space-time-frequency or space-time-wave-vector data. We compare the two preprocessing methods using computer simulations to determine in which cases ICA, tensor decomposition, or a combination of both should be used. The second part of the thesis is devoted to distributed source localization techniques. After providing a survey and a classification of current state-of-the-art methods, we present an algorithm for distributed source localization that builds on the results of the tensor-based preprocessing methods. The algorithm is evaluated on simulated and real EEG data. Furthermore, we propose several improvements of a source imaging method based on structured sparsity. Finally, a comprehensive performance study of various brain source imaging methods is conducted on physiologically plausible, simulated EEG data.

[1]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[2]  Fetsje Bijma,et al.  Mathematical modelling of magnetoencephalographic data , 2005 .

[3]  Fumikazu Miwakeichi,et al.  Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis , 2004, NeuroImage.

[4]  Lei Ding,et al.  Reconstructing cortical current density by exploring sparseness in the transform domain , 2009, Physics in medicine and biology.

[5]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[6]  Laurent Albera,et al.  Blind Underdetermined Mixture Identification by Joint Canonical Decomposition of HO Cumulants , 2010, IEEE Transactions on Signal Processing.

[7]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[8]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[9]  S. Tobimatsu,et al.  Feasibility and limitations of magnetoencephalographic detection of epileptic discharges: Simultaneous recording of magnetic fields and electrocorticography , 2002, Neurological research.

[10]  Pierre Comon,et al.  Blind identification of under-determined mixtures based on the characteristic function , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[11]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[12]  J S Ebersole,et al.  Magnetoencephalography/Magnetic Source Imaging in the Assessment of Patients with Epilepsy , 1997, Epilepsia.

[13]  Lars Kai Hansen,et al.  A regularized matrix factorization approach to induce structured sparse-low-rank solutions in the EEG inverse problem , 2014, EURASIP Journal on Advances in Signal Processing.

[14]  Christophe Grova,et al.  MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches , 2013, PloS one.

[15]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[16]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[17]  Pierre Comon,et al.  A Contrast Function for Independent Component Analysis Without Permutation Ambiguity , 2010, IEEE Transactions on Neural Networks.

[18]  Lei Ding,et al.  Simultaneous EEG and MEG source reconstruction in sparse electromagnetic source imaging , 2013, Human brain mapping.

[19]  Saeid Sanei,et al.  Blind separation and localization of correlated P300 subcomponents from single trial recordings using extended PARAFAC2 tensor model , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[21]  Michael Unser,et al.  Fast implementation of the continuous wavelet transform with integer scales , 1994, IEEE Trans. Signal Process..

[22]  J Gotman,et al.  Reliability of dipole models of epileptic spikes , 1999, Clinical Neurophysiology.

[23]  Laurent Albera,et al.  Semi-algebraic canonical decomposition of multi-way arrays and Joint Eigenvalue Decomposition , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  A. Ferreol,et al.  Blind identification of underdetermined mixtures based on the hexacovariance , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[25]  Karl J. Friston,et al.  A mesostate-space model for EEG and MEG , 2007, NeuroImage.

[26]  Anders M. Dale,et al.  Vector-based spatial–temporal minimum L1-norm solution for MEG , 2006, NeuroImage.

[27]  Olivier D. Faugeras,et al.  A common formalism for the Integral formulations of the forward EEG problem , 2005, IEEE Transactions on Medical Imaging.

[28]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[29]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[30]  Laurent Albera,et al.  Iterative methods for the canonical decomposition of multi-way arrays: Application to blind underdetermined mixture identification , 2011, Signal Process..

[31]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[32]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[33]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[34]  Bart Vanrumste,et al.  EEG/MEG Source Imaging: Methods, Challenges, and Open Issues , 2009, Comput. Intell. Neurosci..

[35]  Laurent Albera,et al.  SAUD, un algorithme d'ICA par deflation semi-algebrique , 2007 .

[36]  Andrzej Cichocki,et al.  Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC , 2012, SIAM J. Matrix Anal. Appl..

[37]  Nathalie Delfosse,et al.  Adaptive blind separation of independent sources: A deflation approach , 1995, Signal Process..

[38]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[39]  Julia P. Owen,et al.  Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data , 2012, NeuroImage.

[40]  Florian Roemer,et al.  A semi-algebraic framework for approximate CP decompositions via simultaneous matrix diagonalizations (SECSI) , 2013, Signal Process..

[41]  Min Zhu,et al.  A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems , 2013, Comput. Methods Programs Biomed..

[42]  Philippe Besse,et al.  CANONICAL CORRELATION ANALYSIS , 2009 .

[43]  Daniel Graupe,et al.  Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition , 2005, Brain Topography.

[44]  Alexandre Gramfort,et al.  Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision. (Localisation et suivi d'activité fonctionnelle cérébrale en électro et magnétoencéphalographie: Méthodes et applications au système visuel humain) , 2009 .

[45]  Kensuke Sekihara,et al.  Modified beamformers for coherent source region suppression , 2006, IEEE Transactions on Biomedical Engineering.

[46]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[47]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[48]  David Poeppel,et al.  Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique , 2001, IEEE Transactions on Biomedical Engineering.

[49]  K. Matsuura,et al.  A robust reconstruction of sparse biomagnetic sources , 1997, IEEE Transactions on Biomedical Engineering.

[50]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[51]  Jian-Xun Mi,et al.  A Novel Algorithm for Independent Component Analysis with Reference and Methods for Its Applications , 2014, PloS one.

[52]  X. Luciani,et al.  Canonical Polyadic Decomposition based on joint eigenvalue decomposition , 2014 .

[53]  Lars Kai Hansen,et al.  Modeling latency and shape changes in trial based neuroimaging data , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[54]  Fabrice Wendling,et al.  A Physiologically Plausible Spatio-Temporal Model for EEG Signals Recorded With Intracerebral Electrodes in Human Partial Epilepsy , 2007, IEEE Transactions on Biomedical Engineering.

[55]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[56]  R. Keriven,et al.  Imaging Methods for MEG/EEG Inverse Problem , 2005 .

[57]  Olivier Rioul,et al.  Fast Algorithms for Discrete and Continuous , 1992 .

[58]  Florian Roemer,et al.  Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[59]  Sabine Van Huffel,et al.  ResearchArticle Canonical Decomposition of Ictal Scalp EEG and Accurate Source Localisation: Principles and Simulation Study , 2007 .

[60]  I. Merlet Dipole modeling of interictal and ictal EEG and MEG paroxysms. , 2002, Epileptic disorders : international epilepsy journal with videotape.

[61]  Ettore Lettich,et al.  Ten Percent Electrode System for Topographic Studies of Spontaneous and Evoked EEG Activities , 1985 .

[62]  Shannon D. Blunt,et al.  Spatio–Temporal Reconstruction of Bilateral Auditory Steady-State Responses Using MEG Beamformers , 2008, IEEE Transactions on Biomedical Engineering.

[63]  David Poeppel,et al.  Application of an MEG eigenspace beamformer to reconstructing spatio‐temporal activities of neural sources , 2002, Human brain mapping.

[64]  Théodore Papadopoulo,et al.  OpenMEEG: opensource software for quasistatic bioelectromagnetics , 2010, Biomedical engineering online.

[65]  Dezhong Yao,et al.  Lp Norm Iterative Sparse Solution for EEG Source Localization , 2007, IEEE Transactions on Biomedical Engineering.

[66]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[67]  Fabrice Wendling,et al.  The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy , 2008, NeuroImage.

[68]  F Cincotti,et al.  Linear inverse source estimate of combined EEG and MEG data related to voluntary movements , 2001, Human brain mapping.

[69]  M. Cook,et al.  EEG source localization in focal epilepsy: Where are we now? , 2008, Epilepsia.

[70]  Pierre Comon,et al.  Séparation de mélanges de signaux , 1989 .

[71]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[72]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[73]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[74]  Rémi Gribonval,et al.  A performance study of various brain source imaging approaches , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[75]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[76]  J. Bellanger,et al.  A method to identify reproducible subsets of co-activated structures during interictal spikes. Application to intracerebral EEG in temporal lobe epilepsy , 2005, Clinical Neurophysiology.

[77]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[78]  Anders M. Dale,et al.  Improved Localization of Cortical Activity By Combining EEG and MEG with MRI Cortical Surface Reconstruction , 2002 .

[79]  Jen-Chuen Hsieh,et al.  Author's Personal Copy Spatially Sparse Source Cluster Modeling by Compressive Neuromagnetic Tomography , 2022 .

[80]  Pedro A. Valdes-Sosa,et al.  Penalized Least Squares methods for solving the EEG Inverse Problem , 2008 .

[81]  Roger B. H. Tootell,et al.  The advantage of combining MEG and EEG: Comparison to fMRI in focally stimulated visual cortex , 2007, NeuroImage.

[82]  Lei Ding,et al.  Reconstructing spatially extended brain sources via enforcing multiple transform sparseness , 2014, NeuroImage.

[83]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[84]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[85]  M Wagner,et al.  Improving source reconstructions by combining bioelectric and biomagnetic data. , 1998, Electroencephalography and clinical neurophysiology.

[86]  E. Oja,et al.  BSS and ICA in Neuroinformatics: From Current Practices to Open Challenges , 2008, IEEE Reviews in Biomedical Engineering.

[87]  Laurent Albera,et al.  Brain Source Localization Using a Fourth-Order Deflation Scheme , 2008, IEEE Transactions on Biomedical Engineering.

[88]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[89]  G. Golub,et al.  Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.

[90]  C. Im,et al.  Evaluation of Algorithms for Intracranial EEG (iEEG) Source Imaging of Extended Sources: Feasibility of Using iEEG Source Imaging for Localizing Epileptogenic Zones in Secondary Generalized Epilepsy , 2011, Brain Topography.

[91]  Anthony T. Herdman,et al.  Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity , 2009, NeuroImage.

[92]  Pierre Comon,et al.  Blind Multilinear Identification , 2012, IEEE Transactions on Information Theory.

[93]  R. Oostenveld,et al.  Independent EEG Sources Are Dipolar , 2012, PloS one.

[94]  Kensuke Sekihara,et al.  Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction , 2005, NeuroImage.

[95]  E. Halgren,et al.  Dynamic Statistical Parametric Mapping Combining fMRI and MEG for High-Resolution Imaging of Cortical Activity , 2000, Neuron.

[96]  Florian Roemer,et al.  Temporally resolved multi-way component analysis of dynamic sources in event-related EEG data using parafac2 , 2010, 2010 18th European Signal Processing Conference.

[97]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[98]  A. Dale,et al.  Distributed current estimates using cortical orientation constraints , 2006, Human brain mapping.

[99]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[100]  Comon 5 - Analyse en composantes indépendantes et identification aveugle , 1990 .

[101]  Phillip A. Regalia,et al.  An adaptive unit norm filter with applications to signal analysis and Karhunen-Loeve transformations , 1990 .

[102]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[103]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[104]  J.C. Mosher,et al.  Multiple dipole modeling and localization from spatio-temporal MEG data , 1992, IEEE Transactions on Biomedical Engineering.

[105]  Deanna L. Dickens,et al.  Sparse imaging of cortical electrical current densities via wavelet transforms , 2012, Physics in medicine and biology.

[106]  大石 誠 Epileptic spikes : Magnetoencephalography versus simultaneous electrocorticography , 2003 .

[107]  Wei Lu,et al.  Constrained Independent Component Analysis , 2000, NIPS.

[108]  Matthew J. Brookes,et al.  Beamformer reconstruction of correlated sources using a modified source model , 2007, NeuroImage.

[109]  P. Comon,et al.  ICAR: a tool for blind source separation using fourth-order statistics only , 2005, IEEE Transactions on Signal Processing.

[110]  Lars Kai Hansen,et al.  Shift-invariant multilinear decomposition of neuroimaging data , 2008, NeuroImage.

[111]  De-Shuang Huang,et al.  A New Constrained Independent Component Analysis Method , 2007, IEEE Transactions on Neural Networks.

[112]  Barry D. Van Veen,et al.  Cortical patch basis model for spatially extended neural activity , 2006, IEEE Transactions on Biomedical Engineering.

[113]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[114]  Laurent Albera,et al.  Fourth-order blind identification of underdetermined mixtures of sources (FOBIUM) , 2005, IEEE Transactions on Signal Processing.

[115]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[116]  Mingzhou Ding,et al.  Differentially Variable Component Analysis (dVCA): Identifying Multiple Evoked Components using Trial-to-Trial Variability , 2003 .

[117]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[118]  S. Huffel,et al.  Neonatal seizure localization using PARAFAC decomposition , 2009, Clinical Neurophysiology.

[119]  Joachim Möcks,et al.  Decomposing event-related potentials: A new topographic components model , 1988, Biological Psychology.

[120]  Richard M. Leahy,et al.  Identifying true cortical interactions in MEG using the nulling beamformer , 2010, NeuroImage.

[121]  R. Pascual-Marqui Review of methods for solving the EEG inverse problem , 1999 .

[122]  Florian Roemer,et al.  Multi-dimensional PARAFAC2 component analysis of multi-channel EEG data including temporal tracking , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[123]  Karl J. Friston,et al.  MEG source localization under multiple constraints: An extended Bayesian framework , 2006, NeuroImage.

[124]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[125]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[126]  Luca Baldassarre,et al.  Structured Sparsity Models for Brain Decoding from fMRI Data , 2012, 2012 Second International Workshop on Pattern Recognition in NeuroImaging.

[127]  Gaël Varoquaux,et al.  Identifying Predictive Regions from fMRI with TV-L1 Prior , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[128]  Laurent Albera,et al.  Joint Eigenvalue Decomposition of Non-Defective Matrices Based on the LU Factorization With Application to ICA , 2015, IEEE Transactions on Signal Processing.

[129]  J. Mocks,et al.  Topographic components model for event-related potentials and some biophysical considerations , 1988, IEEE Transactions on Biomedical Engineering.

[130]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[131]  Driss Aboutajdine,et al.  Source separation contrasts using a reference signal , 2004, IEEE Signal Processing Letters.

[132]  J. Ebersole,et al.  Intracranial EEG Substrates of Scalp EEG Interictal Spikes , 2005, Epilepsia.

[133]  Richard J. Davidson,et al.  Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG , 2010, NeuroImage.

[134]  David Poeppel,et al.  Performance of an MEG adaptive-beamformer technique in the presence of correlated neural activities: effects on signal intensity and time-course estimates , 2002, IEEE Transactions on Biomedical Engineering.

[135]  Laurent Albera,et al.  Localization of extended brain sources from EEG/MEG: The ExSo-MUSIC approach , 2011, NeuroImage.

[136]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[137]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[138]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[139]  Karl J. Friston,et al.  MEG and EEG data fusion: Simultaneous localisation of face-evoked responses , 2009, NeuroImage.

[140]  Wei Lu,et al.  Approach and applications of constrained ICA , 2005, IEEE Transactions on Neural Networks.

[141]  Wei Lu,et al.  ICA with Reference , 2006, Neurocomputing.

[142]  Hiroshi Shibasaki,et al.  Simultaneous Recording of Epileptiform Discharges by MEG and Subdural Electrodes in Temporal Lobe Epilepsy , 1997, NeuroImage.

[143]  Lotfi Senhadji,et al.  ICA-based EEG denoising: a comparative analysis of fifteen methods , 2012 .

[144]  Patrick Dupont,et al.  Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone , 2007, NeuroImage.

[145]  Douglas O. Cheyne,et al.  Reconstruction of correlated brain activity with adaptive spatial filters in MEG , 2010, NeuroImage.

[146]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[147]  Florian Roemer,et al.  A closed-form solution for Parallel Factor (PARAFAC) Analysis , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[148]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[149]  Shiqian Ma,et al.  An efficient algorithm for compressed MR imaging using total variation and wavelets , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[150]  Richard M. Leahy,et al.  Source localization using recursively applied and projected (RAP) MUSIC , 1997 .

[151]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[152]  Jens Haueisen,et al.  Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations , 2013, NeuroImage.

[153]  J S Ebersole,et al.  Noninvasive Localization of Epileptogenic Foci by EEG Source Modeling , 2000, Epilepsia.

[154]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[155]  Saeid Sanei,et al.  Simultaneous localization and separation of biomedical signals by tensor factorization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[156]  A. Ferreol,et al.  High-Resolution Direction Finding From Higher Order Statistics: The$2rm q$-MUSIC Algorithm , 2006, IEEE Transactions on Signal Processing.

[157]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[158]  M. Fuchs,et al.  Smooth reconstruction of cortical sources from EEG or MEG recordings , 1996, NeuroImage.

[159]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[160]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[161]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[162]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[163]  Pierre Comon,et al.  How fast is FastICA? , 2006, 2006 14th European Signal Processing Conference.

[164]  Elena Urrestarazu,et al.  Independent Component Analysis Removing Artifacts in Ictal Recordings , 2004, Epilepsia.

[165]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[166]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[167]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[168]  Pierre Comon,et al.  Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size , 2010, IEEE Transactions on Neural Networks.

[169]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[170]  W. van Paesschen,et al.  Improving the Interpretation of Ictal Scalp EEG: BSS–CCA Algorithm for Muscle Artifact Removal , 2007, Epilepsia.

[171]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[172]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[173]  Andreas Ziehe,et al.  Combining sparsity and rotational invariance in EEG/MEG source reconstruction , 2008, NeuroImage.

[174]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[175]  Zhimin Li,et al.  A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods , 2011 .

[176]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[177]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[178]  Jean Gotman,et al.  Evaluation of EEG localization methods using realistic simulations of interictal spikes , 2006, NeuroImage.

[179]  M. S. Hämäläinen,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[180]  Fabrice Bartolomei,et al.  Electric Source Imaging in Frontal Lobe Epilepsy , 2006, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[181]  Sepideh Hajipour Sardouie,et al.  Canonical Polyadic decomposition of complex-valued multi-way arrays based on Simultaneous Schur Decomposition , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[182]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..