Talairach space as a tool for intersubject standardization in the brain

[1]  Scott T. Grafton,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[2]  J L Lancaster,et al.  k‐tree method for high‐speed spatial normalization , 1998, Human brain mapping.

[3]  P T Fox,et al.  The growth of human brain mapping , 1997, Human brain mapping.

[4]  K. Zilles,et al.  Human brain atlas: For high‐resolution functional and anatomical mapping , 1994, Human brain mapping.

[5]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[6]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[7]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[8]  M. Mintun,et al.  Enhanced Detection of Focal Brain Responses Using Intersubject Averaging and Change-Distribution Analysis of Subtracted PET Images , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  Karl Zilles,et al.  Gross Anatomy and Gyrification of the Occipital Cortex in Human and Non-Human Primate , 1993 .

[10]  Joel L. Davis,et al.  Macro-organization of the Circuits Connecting the Basal Ganglia with the Cortical Motor Areas , 1994 .

[11]  Karl J. Friston,et al.  The Relationship between Global and Local Changes in PET Scans , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  K Amunts,et al.  Quantitative analysis of sulci in the human cerebral cortex: Development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture , 1997, Human brain mapping.

[13]  P. Fox,et al.  Global spatial normalization of human brain using convex hulls. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  J L Lancaster,et al.  Neuroscience on the net. , 1994, Science.

[15]  Karl J. Friston,et al.  Comparing Functional (PET) Images: The Assessment of Significant Change , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[16]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[17]  M. Mintun,et al.  Automated detection of the intercommissural line for stereotactic localization of functional brain images. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  J L Lancaster,et al.  Functional volumes modeling: Theory and preliminary assessment , 1997, Human brain mapping.

[19]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[20]  J C Mazziotta,et al.  Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. , 1991, Journal of neurophysiology.

[21]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[22]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[23]  M. Mintun,et al.  A Noninvasive Approach to Quantitative Functional Brain Mapping with H215O and Positron Emission Tomography , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[24]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  J. Allman,et al.  Mapping human visual cortex with positron emission tomography , 1986, Nature.

[26]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[27]  Edgar M. Housepian Atlas d'anatomie stereotaxique du telencephale. , 1968 .

[28]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[29]  P. Fox,et al.  Spatial normalization origins: Objectives, applications, and alternatives , 1995 .

[30]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[31]  Karl J. Friston,et al.  Localisation in PET Images: Direct Fitting of the Intercommissural (AC—PC) Line , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  C. Pelizzari,et al.  Accurate Three‐Dimensional Registration of CT, PET, and/or MR Images of the Brain , 1989, Journal of computer assisted tomography.

[33]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[34]  Jack L. Lancaster,et al.  Accurate High-Speed Spatial Normalization Using an Octree Method , 1999, NeuroImage.

[35]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[36]  T Paus,et al.  Transcranial magnetic stimulation during PET: Reaching and verifying the target site , 1998, Human brain mapping.

[37]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[38]  Alan C. Evans Commentary on “spatial regulation and normalization of images” by Friston et al. , 1995 .

[39]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[40]  J. F. Bradshaw,et al.  The principal axes transformation--a method for image registration. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[41]  G. Ojemann,et al.  Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. , 1989, Journal of neurosurgery.

[42]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[43]  H. Freund,et al.  Cerebral Cortical Localization: Application and Validation of the Proportional Grid System in MR Imaging , 1989, Journal of computer assisted tomography.

[44]  B. Ardekani,et al.  Automatic Detection of Intradural Spaces in MR Images , 1994, Journal of computer assisted tomography.

[45]  P T Fox,et al.  Does inter-subject variability in cortical functional organization increase with neural 'distance' from the periphery? , 1991, Ciba Foundation symposium.

[46]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[47]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[48]  M. Raichle,et al.  A Stereotactic Method of Anatomical Localization for Positron Emission Tomography , 1985, Journal of computer assisted tomography.