Confidence Estimation of ToF and Stereo Data for 3D Data Fusion. Stima della Confidenza delle Misure Ottenute da Sensori ToF e da Sistemi Stereo per la Fusione di Dati 3D

This thesis focuses on the analysis of ToF and stereo vision systems, with the goal of extracting reliable confidence measures associated to the computed depth maps.The two families of sensors are described and after an analysis on practical issues some confidence measures are provided.Then, a framework for 3D data fusion with confidence information is presented and evaluated over a dataset of real world data.Results show that the proposed approach outperforms the performance of the two systems

[1]  Pietro Zanuttigh,et al.  A Novel Interpolation Scheme for Range Data with Side Information , 2009, 2009 Conference for Visual Media Production.

[2]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[3]  Ruigang Yang,et al.  Fusion of time-of-flight depth and stereo for high accuracy depth maps , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Stefano Mattoccia,et al.  A locally global approach to stereo correspondence , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[5]  Daniel Cremers,et al.  Detection and Segmentation of Independently Moving Objects from Dense Scene Flow , 2009, EMMCVPR.

[6]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[7]  Xiaoyan Hu,et al.  A Quantitative Evaluation of Confidence Measures for Stereo Vision , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Heiko Hirschmüller,et al.  Stereo Processing by Semiglobal Matching and Mutual Information , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Bernd Scholz-Reiter,et al.  Modeling Distance Nonlinearity in ToF Cameras and Correction Based on Integration Time Offsets , 2011, CIARP.

[10]  Stefano Mattoccia,et al.  Locally Consistent ToF and Stereo Data Fusion , 2012, ECCV Workshops.

[11]  Stefan K. Gehrig,et al.  Exploiting the Power of Stereo Confidences , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Gary R. Bradski,et al.  Learning OpenCV - computer vision with the OpenCV library: software that sees , 2008 .

[13]  H. Aanaes,et al.  Environmental Effects on Measurement Uncertainties of Time-of-Flight Cameras , 2007, 2007 International Symposium on Signals, Circuits and Systems.

[14]  N. Massari,et al.  SPAD Image Sensor With Analog Counting Pixel for Time-Resolved Fluorescence Detection , 2013, IEEE Transactions on Electron Devices.

[15]  Peter Seitz,et al.  Robust Optical Time-of-Flight Range Imaging Based on Smart Pixel Structures , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  Scott Cohen,et al.  Stereo+Kinect for High Resolution Stereo Correspondences , 2013, 2013 International Conference on 3D Vision.

[17]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[18]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[19]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[20]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[21]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[22]  Rahul Nair,et al.  Simulation of Time-of-Flight Sensors using Global Illumination , 2013, VMV.

[23]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Fabio Remondino,et al.  TOF Range-Imaging Cameras , 2013 .

[25]  Andrea Zanella,et al.  Transmission of 3D Scenes over Lossy Channels , 2010, Int. J. Digit. Multim. Broadcast..

[26]  Ruigang Yang,et al.  Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Guido M. Cortelazzo,et al.  A Probabilistic Approach to ToF and Stereo Data Fusion , 2010 .

[28]  Thierry Oggier,et al.  CCD / CMOS Lock-In Pixel for Range Imaging : Challenges , Limitations and State-ofthe-Art , 2005 .

[29]  Tim Weyrich,et al.  Capturing Time-of-Flight data with confidence , 2011, CVPR 2011.

[30]  Reinhard Klette,et al.  Optimality in combinations of confidence measures for stereo vision , 2012, IVCNZ '12.

[31]  Carlo Tomasi,et al.  Depth Discontinuities by Pixel-to-Pixel Stereo , 1999, International Journal of Computer Vision.

[32]  John G. Apostolopoulos,et al.  Fusion of active and passive sensors for fast 3D capture , 2010, 2010 IEEE International Workshop on Multimedia Signal Processing.

[33]  Guido M. Cortelazzo,et al.  Time-of-Flight Cameras and Microsoft Kinect™ , 2012, Springer Briefs in Electrical and Computer Engineering.

[34]  Robert Mahony,et al.  Statistical analysis of signal measurement in time-of-flight cameras , 2011 .