Energy-based truncation of multi-determinant wavefunctions in quantum Monte Carlo.

We present a method for truncating large multi-determinant expansions for use in diffusion Monte Carlo calculations. Current approaches use wavefunction-based criteria to perform the truncation. Our method is more intuitively based on the contribution each determinant makes to the total energy. We show that this approach gives consistent behaviour across systems with varying correlation character, which leads to effective error cancellation in energy differences. This is demonstrated through accurate calculations of the electron affinity of oxygen and the atomisation energy of the carbon dimer. The approach is simple and easy to implement, requiring only quantities already accessible in standard configuration interaction calculations.

[1]  M. Coote,et al.  Efficient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol , 2017 .

[2]  M. Per,et al.  Performance of quantum Monte Carlo for calculating molecular bond lengths. , 2016, The Journal of chemical physics.

[3]  R. Assaraf,et al.  Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo. , 2016, The Journal of chemical physics.

[4]  R. Clay,et al.  Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo. , 2015, The Journal of chemical physics.

[5]  M. Morales,et al.  A fixed-node diffusion Monte Carlo study of the 1,2,3-tridehydrobenzene triradical. , 2014, The Journal of chemical physics.

[6]  S. Russo,et al.  How Important is Orbital Choice in Single-Determinant Diffusion Quantum Monte Carlo Calculations? , 2012, Journal of chemical theory and computation.

[7]  Jeongnim Kim,et al.  Multideterminant Wave Functions in Quantum Monte Carlo. , 2012, Journal of chemical theory and computation.

[8]  Gustavo E Scuseria,et al.  Computing the energy of a water molecule using multideterminants: a simple, efficient algorithm. , 2011, The Journal of chemical physics.

[9]  Ali Alavi,et al.  A study of electron affinities using the initiator approach to full configuration interaction quantum Monte Carlo. , 2011, The Journal of chemical physics.

[10]  R. Needs,et al.  Quantum Monte Carlo study of the first-row atoms and ions. , 2010, The Journal of chemical physics.

[11]  E. Buend́ıa,et al.  Quantum Monte Carlo ground state energies for the singly charged ions from Li through Ar. , 2010, The Journal of chemical physics.

[12]  Omar Valsson,et al.  Photoisomerization of Model Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation Theory , 2010 .

[13]  M. Casula,et al.  Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited. , 2010, The Journal of chemical physics.

[14]  R. Needs,et al.  Continuum variational and diffusion quantum Monte Carlo calculations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  C. Umrigar,et al.  Excited states of methylene from quantum Monte Carlo. , 2009, The Journal of chemical physics.

[16]  Manolo C Per,et al.  Electron-nucleus cusp correction and forces in quantum Monte Carlo. , 2008, The Journal of chemical physics.

[17]  C. Umrigar,et al.  Fixed-node diffusion Monte Carlo study of the structures of m-benzyne. , 2008, The Journal of chemical physics.

[18]  C Filippi,et al.  Energy-consistent pseudopotentials for quantum Monte Carlo calculations. , 2007, The Journal of chemical physics.

[19]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[20]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  C. Umrigar,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions. , 2006, Physical review letters.

[22]  C. F. Bunge Selected configuration interaction with truncation energy error and application to the Ne atom. , 2006, The Journal of chemical physics.

[23]  K. Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2005, Physical review letters.

[24]  K. Ruedenberg,et al.  Correlation energy extrapolation by intrinsic scaling. IV. Accurate binding energies of the homonuclear diatomic molecules carbon, nitrogen, oxygen, and fluorine. , 2005, The Journal of chemical physics.

[25]  M. Casula,et al.  Geminal wave functions with Jastrow correlation: A first application to atoms , 2003, cond-mat/0305169.

[26]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  C. F. Bunge Cracking Electron Correlation , 2005 .