The fate of pelagic CaCO 3 production in a high CO 2 ocean: a model study

This model study addresses the change in pelagic calcium carbonate production (CaCO 3 , as calcite in the model) and dissolution in response to rising atmospheric CO 2 . The parameterization of CaCO 3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO 2 . The model predicts values of CaCO 3 production and dissolution in line with recent estimates. The effect of rising pCO 2 on CaCO 3 production and dissolution was quantified by means of model simulations forced with atmospheric CO 2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO 3 production by 27%. The combined change in production and dissolution of CaCO 3 yields an excess uptake of CO 2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

[1]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[2]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[3]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[4]  Christoph Heinze,et al.  Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model , 2006 .

[5]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[6]  M. Denis,et al.  Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation , 2003 .

[7]  Langdon,et al.  Geochemical consequences of increased atmospheric carbon dioxide on coral reefs , 1999, Science.

[8]  P. B. Duffy,et al.  Anthropogenic carbon and ocean pH , 2001 .

[9]  A. Mucci,et al.  Calcite precipitation in seawater using a constant addition technique: A new overall reaction kinetic expression , 1993 .

[10]  R. Berner,et al.  Dissolution kinetics of calcium carbonate in sea water; IV, Theory of calcite dissolution , 1974 .

[11]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[12]  U. Riebesell,et al.  Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. , 2002 .

[13]  M. Gehlen,et al.  Reassessing the dissolution of marine carbonates: I. Solubility , 2005 .

[14]  Olivier Aumont,et al.  Dust impact on marine biota and atmospheric CO2during glacial periods: LGM DUST, MARINE BIOTA, AND ATMOSPHERIC PCO2 , 2003 .

[15]  R. Healy,et al.  Global Distribution of Total Inorganic Carbon and Total Alkalinity below the Deepest Winter Mixed Layer Depths , 2000 .

[16]  V. Ittekkot,et al.  The abiotically driven biological pump in the ocean and short-term fluctuations in atmospheric CO2 contents , 1993 .

[17]  Julia C. Hargreaves,et al.  Assessing the potential long-term increase of oceanic fossil fuel CO 2 uptake due to CO 2 -calcification feedback , 2007 .

[18]  D. Lea,et al.  Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results) , 1999 .

[19]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[20]  T. Lenton,et al.  Significant long-term increase of fossil fuel CO2 uptake from reduced marine calcification , 2006 .

[21]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[22]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[23]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[24]  B. Hales,et al.  Evidence in support of first-order dissolution kinetics of calcite in seawater , 1997 .

[25]  David L. Parkhurst,et al.  The kinetics of calcite dissolution in CO 2 -water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO 2 , 1978 .

[26]  Robert W. Buddemeier,et al.  Effect of calcium carbonate saturation of seawater on coral calcification , 1998 .

[27]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[28]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[29]  A. Mucci The solubility of calcite and aragonite in seawater at various salinities , 1983 .

[30]  R. Keir The dissolution kinetics of biogenic calcium carbonates in seawater , 1980 .

[31]  J. Henderiks,et al.  A coccolithophore concept for constraining the Cenozoic carbon cycle , 2007 .

[32]  J. Morse,et al.  The dissolution kinetics of major sedimentary carbonate minerals , 2002 .

[33]  P. Cox,et al.  How positive is the feedback between climate change and the carbon cycle? , 2003 .

[34]  L. M. Walter,et al.  The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study , 1985 .

[35]  C. Culberson,et al.  The solubility of calcite in seawater at atmospheric pressure and 35%permil; salinity , 1973 .

[36]  M. Heimann,et al.  The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions , 2004 .

[37]  R. Feely,et al.  Progress made in study of ocean's calcium carbonate budget , 2002 .

[38]  V. Fabry Aragonite production by pteropod molluscs in the subarctic Pacific , 1989 .

[39]  J. Erez,et al.  Dissolution rates of calcium carbonate in the deep ocean; an in-situ experiment in the North Atlantic Ocean , 1978 .

[40]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[41]  J. Morse,et al.  Dissolution kinetics of calcium carbonate in seawater; VII, The dissolution kinetics of synthetic aragonite and pteropod tests , 1979 .

[42]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[43]  Ulf Riebesell,et al.  Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2 , 2001 .

[44]  Denis Allemand,et al.  Impacts of ocean acidification on coral reefs and other marine calcifiers : a guide for future research , 2006 .

[45]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[46]  D. Wallace,et al.  Program developed for CO{sub 2} system calculations , 1998 .

[47]  George A. Jackson,et al.  A model of the formation of marine algal flocs by physical coagulation processes , 1990 .

[48]  W. Broecker,et al.  The Solubility of Calcite in Sea Water , 1977 .

[49]  E. Maier‐Reimer,et al.  Integrated Data Sets of the EU FP5 Research Project ORFOIS: Origin and fate of biogenic particle fluxes in the ocean and their interactions with atmospheric CO2 concentrations as well as the marine sediment (Vol. 1) , 2005 .

[50]  V. Fabry Shell growth rates of pteropod and heteropod molluscs and aragonite production in the open ocean: Implications for the marine carbonate system , 1990 .

[51]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[52]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[53]  B. Hales,et al.  Calcite dissolution in sediments of the Ceara Rise: In situ measurements of porewater O2, pH, and CO2(aq) , 1997 .

[54]  M. Gehlen,et al.  Reassessing the dissolution of marine carbonates: II. Reaction kinetics , 2005 .

[55]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[56]  M. Follows,et al.  Possible overestimation of shallow‐depth calcium carbonate dissolution in the ocean , 2006 .

[57]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[58]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[59]  Jean-Pierre Gattuso,et al.  Marine calcification as a source of carbon dioxide : positive feedback of increasing atmospheric CO2 , 1994 .

[60]  M. Gehlen,et al.  Modelling the distribution of stable carbon isotopes in porewaters of deep-sea sediments , 1999 .

[61]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[62]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .

[63]  G. Evans,et al.  A vertically resolved model for phytoplankton aggregation , 2000 .

[64]  G. Evans,et al.  Representing phytoplankton aggregates in biogeochemical models , 1999 .

[65]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[66]  R. Berner,et al.  Dissolution kinetics of calcium carbonate in sea water; I, A kinetic origin for the lysocline , 1972 .

[67]  J. Morse Dissolution kinetics of calcium carbonate in sea water; VI, The near-equilibrium dissolution kinetics of calcium carbonate-rich deep sea sediments , 1978 .

[68]  B. Delille,et al.  Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi , 2005 .

[69]  R. Berner The solubility of calcite and aragonite in seawater at atmospheric pressure and 34.5 0 / 00 salinity , 1976 .

[70]  Christoph Heinze,et al.  Simulating oceanic CaCO3 export production in the greenhouse , 2004 .

[71]  A. Mucci,et al.  A Continuous and Mechanistic Representation of Calcite Reaction-Controlled Kinetics in Dilute Solutions at 25°C and 1 Atm Total Pressure , 1995 .

[72]  A. Mucci,et al.  A continuous and mechanistic representation of calcite reaction-controlled kinetics in dilute solutions at 25°C and 1 atm total pressure , 1995 .

[73]  R. Feely,et al.  In situ calcium carbonate dissolution in the Pacific Ocean , 2002 .