Determining the Remaining Prestress Force in a Prestressed Concrete Crosstie

The research presented herein focuses on determining the amount of internal prestressing force and bending resistance that is necessary to provide a durable long-term concrete railroad tie. In order to accomplish this, the researchers conducted a systematic evaluation of existing concrete ties that successfully withstood over 25 years of service in track. An experimental method for determining the remaining prestress force in these existing prestressed concrete railroad ties is currently under development.The ties are first loaded in the upside-down orientation, with supports located at the rail seats, and two point loads applied at the center of the tie. A loading rate of 1,000 lb/min was used to initiate flexural cracking in the center of the tie. Once cracking was observed, the ties underwent 200 cycles of loading to reduce the friction between the prestressing tendons and the concrete. When the cycling was completed, the existing crack was instrumented with an extensometer to measure the Crack Opening Displacement (COD). The ties were loaded once more at 1,000 lb/min to develop a Load vs. COD relation.A systematic method of determining the load required to reopen the crack from the Load vs. COD relation is being developed using ties cast at a manufacturing plant that were instrumented with internal vibrating-wire strain gages. Using the load required to reopen the crack, along with the known cross-sectional properties at the center of the tie, the remaining prestress force is calculated through equilibrium of forces. This method allows for the determination of the remaining prestress force in a member with known section properties to be obtained through load testing.Copyright © 2017 by ASME