Molecular weight fractionation by confinement of polymer in one-dimensional pillar[5]arene channels

[1]  T. Ogoshi,et al.  Applications of Pillar[n]arene-Based Supramolecular Assemblies. , 2018, Angewandte Chemie.

[2]  Nan Song,et al.  Molecular-Scale Porous Materials Based on Pillar[n]arenes , 2018, Chem.

[3]  T. Ogoshi,et al.  An Electric Trap: Electron-Rich Carbonyl Axis Ends Slow Threading/Dethreading Exchange Dynamics of Pillar[5]arene Ring along Axis , 2018, Israel Journal of Chemistry.

[4]  T. Ogoshi,et al.  Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes. , 2018, Accounts of chemical research.

[5]  A. M. Brouwer,et al.  Spacer Length‐Independent Shuttling of the Pillar[5]arene Ring in Neutral [2]Rotaxanes , 2018, Chemistry.

[6]  Kazuki Saito,et al.  Separation of Linear and Branched Alkanes Using Host-Guest Complexation of Cyclic and Branched Alkane Vapors by Crystal State Pillar[6]arene. , 2018, Angewandte Chemie.

[7]  Y. Sakata,et al.  Alkane-length sorting using activated pillar[5]arene crystals. , 2017, Chemical communications.

[8]  Y. Sakata,et al.  Alkane-Shape-Selective Vapochromic Behavior Based on Crystal-State Host-Guest Complexation of Pillar[5]arene Containing One Benzoquinone Unit. , 2017, Journal of the American Chemical Society.

[9]  Yoshiaki Nakamoto,et al.  Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. , 2016, Chemical reviews.

[10]  Huai Sun,et al.  COMPASS II: extended coverage for polymer and drug-like molecule databases , 2016, Journal of Molecular Modeling.

[11]  Y. Sakata,et al.  Host-Guest Complexation of Perethylated Pillar[5]arene with Alkanes in the Crystal State. , 2015, Angewandte Chemie.

[12]  Chunju Li,et al.  Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. , 2014, Chemical communications.

[13]  Severin T. Schneebeli,et al.  Functionalizing pillar[n]arenes. , 2014, Accounts of chemical research.

[14]  T. Ogoshi,et al.  Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host-guest interactions. , 2014, Chemical communications.

[15]  P. Sozzani,et al.  Confined polymerization in porous organic frameworks with an ultrahigh surface area. , 2012, Angewandte Chemie.

[16]  Yong Yang,et al.  Pillararenes, a new class of macrocycles for supramolecular chemistry. , 2012, Accounts of chemical research.

[17]  T. Ogoshi,et al.  Selective complexation of n-alkanes with pillar[5]arene dimers in organic media. , 2011, Chemical communications.

[18]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[19]  Hideki Tanaka,et al.  Unveiling thermal transitions of polymers in subnanometre pores , 2010, Nature communications.

[20]  T. Ogoshi,et al.  High Yield Synthesis of Polyrotaxane Constructed from Pillar[5]arene and Viologen Polymer and Stabilization of Its Radical Cation , 2010 .

[21]  S. Fujinami,et al.  Synthesis and conformational characteristics of alkyl-substituted pillar[5]arenes. , 2010, The Journal of organic chemistry.

[22]  T. Ogoshi,et al.  Polypseudorotaxane Constructed from Pillar[5]arene and Viologen Polymer , 2010 .

[23]  B. G. Davis,et al.  High-purity discrete PEG-oligomer crystals allow structural insight. , 2009, Angewandte Chemie.

[24]  P. Sozzani,et al.  Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace. , 2008, Journal of the American Chemical Society.

[25]  Yoshiaki Nakamoto,et al.  para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. , 2008, Journal of the American Chemical Society.

[26]  O. Terasaki,et al.  Complete shape retention in the transformation of silica to polymer micro-objects , 2006, Nature materials.

[27]  J. Araki,et al.  Efficient Production of Polyrotaxanes fromalpha-Cyclodextrin and Poly(ethylene glycol) , 2005 .

[28]  Piero Sozzani,et al.  A family of supramolecular frameworks of polyconjugated molecules hosted in aromatic nanochannels. , 2004, Angewandte Chemie.

[29]  P. Sozzani,et al.  Cooperation of multiple CH...pi interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR. , 2004, Chemical communications.

[30]  S. Shimada,et al.  Structure and Molecular Motion of Poly(ethylene oxide) Chains Tethered on Silica by Solid-State 13C NMR Method , 2001 .

[31]  Doan,et al.  Control of energy transfer in oriented conjugated polymer-mesoporous silica composites , 2000, Science.

[32]  S. Vega,et al.  High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment , 1999 .

[33]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[34]  S. Schantz Structure and Mobility in Poly(ethylene oxide)/Poly(methyl methacrylate) Blends Investigated by 13C Solid-State NMR , 1997 .

[35]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[36]  R. A. Mckay,et al.  Total suppression of sidebands in CPMAS C-13 NMR , 1982 .

[37]  D. Torchia The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts , 1978 .