High density compression of hollow-shell target by Gekko-XII and laser fusion research at ILE, Osaka University

[1]  Y. Setsuhara,et al.  Direct areal density measurement by activation technique for plastic hollow shell implosion experiments , 1989 .

[2]  Bradley,et al.  Cryogenic-laser-fusion target implosion studies performed with the OMEGA uv-laser system. , 1989, Physical review. A, General physics.

[3]  T. Yabe,et al.  Experimental study of energy transport in thin Al and Au foils irradiated with a 263-nm laser , 1989 .

[4]  Yen-Wei Chen,et al.  Three-Dimensional Reconstruction of Laser-Irradiated Targets Using URA Coded Aperture Cameras , 1989 .

[5]  N. Miyanaga,et al.  Fuel areal density measurement of laser‐imploded targets by use of elastically scattered protons , 1989 .

[6]  Course,et al.  Inertial confinement fusion : proceedings of the Course and Workshop held at Villa Monastero-Varenna, Italy, 6-16 Sep. 1988 , 1989 .

[7]  Tsakiris,et al.  X-ray generation in a cavity heated by 1.3- or 0.44- microm laser light. III. Comparison of the experimental results with theoretical predictions for x-ray confinement. , 1988, Physical review. A, General physics.

[8]  Hiroshi Azechi,et al.  Scalings of implosion experiments for high neutron yield , 1988 .

[9]  Y. Kishimoto,et al.  An Extension of Spitzer-Harm Theory on Thermal Transport to Steep Temperature Gradient Case.II.Integral Representation , 1988 .

[10]  Heinrich Hora,et al.  Volume Ignition in Pellet Fusion to Overcome the Difficulties of Central Ignition , 1987 .

[11]  Hiroshi Azechi,et al.  Experimental determination of fuel density‐radius product of inertial confinement fusion targets using secondary nuclear fusion reactions , 1986 .

[12]  T. Yabe,et al.  Radiochemistry and secondary reactions for the diagnostics of laser-driven fusion plasmas , 1986 .

[13]  M. Haines,et al.  Nonlinear electron transport in magnetized laser plasmas , 1986 .

[14]  J. Delettrez Thermal electron transport in direct-drive laser fusion , 1986 .

[15]  Development of a coating technique for inertial confinement fusion plastic targets , 1986 .

[16]  S. Nakai,et al.  Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser , 1986, Nature.

[17]  A. R. Bell,et al.  Non‐Spitzer heat flow in a steadily ablating laser‐produced plasma , 1985 .

[18]  R. Wilcox,et al.  Ultrafast turnoff laser triggered gating system for microchannel-plate intensified x-ray spectrometers , 1985 .

[19]  Jacques A. Delettrez,et al.  Electron Heat Flow with Inverse Bremsstrahlung and Ion Motion , 1984 .

[20]  Kunioki Mima,et al.  Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression , 1984 .

[21]  T. Yabe,et al.  Efficient Spherical Compression of Cannonball Targets with 1.052-µm Laser Beams , 1983 .

[22]  J. R. Albritton Laser absorption and heat transport by non-Maxwell-Boltzmann electron distributions , 1983 .

[23]  J. Virmont,et al.  Electron heat transport down steep temperature gradients , 1982 .

[24]  Hiroshi Azechi,et al.  Model for Cannonball-Like Acceleration of Laser-Irradiated Targets , 1981 .

[25]  R. G. Evans,et al.  Electron energy transport in steep temperature gradients in laser-produced plasmas , 1981 .

[26]  M. Divadeenam,et al.  Neutron cross sections , 1981 .

[27]  E. Campbell,et al.  Determination of fuel density-radius product of inertial confinement fusion targets by neutron activation , 1980 .

[28]  A. Bruce Langdon,et al.  Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions , 1980 .

[29]  T. Westermark,et al.  UNSPECIFIC TRITIUM LABELLING ACCELERATED BY MICROWAVE, ALTERNATING CURRENT AND DIRECT CURRENT ELECTRICAL DISCHARGES AND BY ULTRAVIOLET RADIATION , 1960 .

[30]  K. E. Wilzbach TRITIUM-LABELING BY EXPOSURE OF ORGANIC COMPOUNDS TO TRITIUM GAS1 , 1957 .