MODULAR REPRESENTATIONS OF SIMPLE LIE ALGEBRAS

In spite of many efforts over the past 50 years, the irreducible representations of the Lie algebra of a simple algebraic group over a field of prime characteristic are poorly understood. Recent work on quantum groups at a root of unity has provided new impetus for the subject. This article surveys what has been done and what remains to be done.

[1]  D. Rumynin,et al.  Geometric Representation Theory of Restricted Lie Algebras of Classical Type , 1999, math/9909058.

[2]  J. Jantzen Subregular nilpotent representations of [sscr ][Iscr ]n and [sscr ][oscr ]2n+1 , 1999, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  A. Premet Complexity of Lie algebra representations and nilpotent elements of the stabilizers of linear forms , 1998 .

[4]  I. Penkov,et al.  Comparing modular representations of semisimple groups and their Lie algebras , 1997 .

[5]  A. Premet Support Varieties of Non‐Restricted Modules over Lie Algebras of Reductive Groups , 1997, 0711.2128.

[6]  R. Pollack,et al.  On the construction of indecomposable modules over restricted enveloping algebras , 1996 .

[7]  Zongzhu Lin,et al.  Algebraic Group Actions in the Cohomology Theory of Lie Algebras of Cartan Type , 1996 .

[8]  A. Premet Irreducible representations of Lie algebras of reductive groups and the Kac-Weisfeiler conjecture , 1995 .

[9]  J. Jantzen Lectures on quantum groups , 1995 .

[10]  A. Premet An analogue of the Jacobson-Morozov theorem for Lie algebras of reductive groups of good characteristics , 1995 .

[11]  Karl M. Peters,et al.  A construction of modular representations of classical Lie algebras , 1994 .

[12]  V. Kac,et al.  Some remarkable degenerations of quantum groups , 1993 .

[13]  V. Kac,et al.  Some quantum analogues of solvable Lie groups , 1993, hep-th/9308138.

[14]  V. Kac,et al.  Representations of quantum groups at roots of 1 , 1992 .

[15]  Zongzhu Lin Extensions between simple modules for Frobenius kernels , 1991 .

[16]  E. Friedlander,et al.  Induction, deformation, and specialization of Lie algebra representations , 1991 .

[17]  G. Lusztig Quantum groups at roots of 1 , 1990 .

[18]  E. Friedlander,et al.  Deformations of Lie Algebra Representations , 1990 .

[19]  E. Friedlander,et al.  Modular representation theory of Lie algebras , 1988 .

[20]  H. Strade,et al.  Modular Lie Algebras and their Representations , 1988 .

[21]  E. Friedlander,et al.  Geometry of p-unipotent lie algebras , 1987 .

[22]  J. Jantzen Support Varieties of Weyl Modules , 1987 .

[23]  Y. Krylyuk The Zassenhaus Variety of a Classical Semisimple Lie Algebra in Finite Characteristic , 1987 .

[24]  A. Panov Irreducible Representations of the Lie Algebra \mathrm{sl}(n) Over a Field of Positive Characteristic , 1987 .

[25]  J. Jantzen Kohomologie vonp-Lie-Algebren und nilpotente Elemente , 1986 .

[26]  E. Friedlander,et al.  Support varieties for restricted lie algebras , 1986 .

[27]  Gerhard Hiß Die adjungierten Darstellungen der Chevalley-Gruppen , 1984 .

[28]  A. Grishkov Irreducible representations of modular Lie algebras , 1981 .

[29]  G. Lusztig Hecke algebras and Jantzen's generic decomposition patterns , 1980 .

[30]  A. A. Mil'ner Irreducible Representations of Modular Lie Algebras , 1975 .

[31]  A. Rudakov Weights of modular representations , 1972 .

[32]  J. Humphreys Modular representations of classical Lie algebras and semisimple groups , 1971 .

[33]  V. Kats,et al.  Irreducible representations of Lie p-algebras , 1971 .

[34]  A. Rudakov ON REPRESENTATIONS OF CLASSICAL SEMISIMPLE LIE ALGEBRAS OF CHARACTERISTIC p , 1970 .

[35]  R. Pollack Restricted Lie algebras of bounded type , 1968 .

[36]  I. Shafarevich,et al.  Irreducible representations of a simple three-dimensional lie algebra over a field of finite characteristic , 1967 .

[37]  J. Schue Symmetry for the enveloping algebra of a restricted Lie algebra , 1965 .

[38]  Robert Steinberg,et al.  Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.

[39]  G. Hochschild Cohomology of Restricted Lie Algebras , 1954 .

[40]  H. Zassenhaus The Representations of Lie Algebras of Prime Characteristic , 1954, Proceedings of the Glasgow Mathematical Association.

[41]  G. Hochschild REPRESENTATIONS OF RESTRICTED LIE ALGEBRAS OF CHARACTERISTIC p , 1954 .

[42]  C. Curtis Noncommutative extensions of Hilbert rings , 1953 .

[43]  J. Jantzen Representations of Lie algebras in prime characteristic , 1998 .

[44]  Rolf Farnsteiner Periodicity and representation type of modular Lie algebras. , 1995 .

[45]  H. H. Andersen The Irreducible Characters for Semi-Simple Algebraic Groups and for Quantum Groups , 1995 .

[46]  J. Humphreys Conjugacy classes in semisimple algebraic groups , 1995 .

[47]  J. Feldvoss Homological topics in the representation theory of restricted Lie algebras , 1995 .

[48]  D. Nakano Complexity and support varieties for nite dimensional algebras , 1995 .

[49]  Karl M. Peters Characters of modular torsion free representations of classical lie algebras , 1994 .

[50]  H. H. Andersen,et al.  Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p : independence of p , 1994 .

[51]  A. Pressley,et al.  Representations of modular Lie algebras through quantum groups , 1993 .

[52]  Shrawan Kumar,et al.  Cohomology of quantum groups at roots of unity , 1993 .

[53]  C. D. Concini,et al.  Quantum coadjoint action , 1992 .

[54]  Zongzhu Lin Loewy series of certain indecomposable modules for Frobenius subgroups , 1992 .

[55]  G. Lusztig Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra , 1990 .

[56]  A. Panov Irreducible representations of maximal dimension of simple Lie algrbras over a field of positive characteristic , 1989 .

[57]  J. Jantzen Restricted lie algebra cohomology , 1987 .

[58]  E. Friedlander,et al.  Rational actions associated to the adjoint representation , 1987 .

[59]  J. Jantzen Representations of algebraic groups , 1987 .

[60]  G. Benkart,et al.  Representations of rank one lie algebras of characteristic p , 1982 .

[61]  G. Hogeweij Almost-classical Lie algebras. II , 1982 .

[62]  B. Weisfeiler,et al.  Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic p , 1976 .

[63]  F. Veldkamp,et al.  The center of the universal enveloping algebra of a Lie algebra in characteristic $p$ , 1972 .

[64]  D. Quillen On the endomorphism ring of a simple module over an enveloping algebra , 1969 .

[65]  George B. Seligman,et al.  Modular Lie Algebras , 1968 .

[66]  A. J. Berkson,et al.  The $u$-algebra of a restricted Lie algebra is Frobenius , 1964 .

[67]  C. Curtis Representations of Lie Algebras of Classical Type with Applications to Linear Groups , 1960 .

[68]  N. Jacobson Restricted Lie algebras of characteristic , 1941 .