A simulation and decision framework for selection of numerical solvers in scientific computing

Selecting the right numerical solver or the most appropriate numerical package for a particular simulation problem it is increasingly difficult for users without an extensive mathematical background and deeper knowledge in numerical analysis. In this paper, we propose a model-driven combined decision-simulation framework for automatically selecting a numerical method for a given set of equation system. We also propose a formal paradigm based on domain-specific languages for specification of structural and behavioral aspects of the numerical equation solving process. Starting from a declarative description of the equation system that need to be solved, our system is able to detect the nature of the equations, perform symbolic manipulations of the equations, and transform them into a domain-specific model. We describe the motivation for such a system, its main features, and a prototype environment together with a usage example.

[1]  Peter Fritzson,et al.  Automated Static Analysis of Equation-Based Components , 2004, Simul..

[2]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[3]  Linda R. Petzold,et al.  Deriving user interface requirements from densely interleaved scientific computing applications , 2003, 18th IEEE International Conference on Automated Software Engineering, 2003. Proceedings..

[4]  David Frankel,et al.  Model Driven Architecture: Applying MDA to Enterprise Computing , 2003 .

[5]  Viktor K. Prasanna,et al.  MILAN: A Model Based Integrated Simulation Framework for Design of Embedded Systems , 2001, OM '01.

[6]  L. Petzold,et al.  COOPT — a software package for optimal control of large-scale differential—algebraic equation systems , 2001 .

[7]  Richard Kreckel,et al.  Introduction to the GiNaC Framework for Symbolic Computation within the C++ Programming Language , 2000, J. Symb. Comput..

[8]  Hans Petter Langtangen,et al.  Advances in Software Tools for Scientific Computing , 1999 .

[9]  Christopher E. Kees,et al.  C++ implementations of numerical methods for solving differential-algebraic equations: design and optimization considerations , 1999, TOMS.

[10]  Peter Frey,et al.  SEAMS: simulation environment for VHDL-AMS , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[11]  Hilding Elmqvist,et al.  Modelica — A unified object-oriented language for physical systems modeling , 1997 .

[12]  Gabor Karsai,et al.  Model-Integrated Computing , 1997, Computer.

[13]  John R. Rice,et al.  PYTHIA: a knowledge-based system to select scientific algorithms , 1996, TOMS.

[14]  Fei Zhu,et al.  Computer integrated hybrid modeling support systems for enterprise management decision making in concurrent engineering , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[15]  Sven Erik Mattsson,et al.  Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives , 1993, SIAM J. Sci. Comput..

[16]  Mohamed S. Kamel,et al.  ODEXPERT: an expert system to select numerical solvers for initial value ODE systems , 1993, TOMS.

[17]  Michael Lucks,et al.  Automated selection of mathematical software , 1992, TOMS.

[18]  P. M. Hanson,et al.  Algorithm 687: a decision tree for the numerical solution of initial value ordinary differential equations , 1991, TOMS.

[19]  JAMES DEMMEL,et al.  LAPACK: A portable linear algebra library for high-performance computers , 1990, Proceedings SUPERCOMPUTING '90.

[20]  Ronald F. Boisvert,et al.  GAMS: a framework for the management of scientific software , 1985, TOMS.

[21]  Wayne R. Cowell,et al.  Sources and development of mathematical software , 1984 .

[22]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[23]  Michael T. Heath,et al.  A Numerical Library and Its Support , 1978, TOMS.

[24]  A. D. Hall,et al.  The PORT Mathematical Subroutine Library , 1978, TOMS.

[25]  John K. Reid,et al.  Algorithm 529: Permutations To Block Triangular Form [F1] , 1978, TOMS.

[26]  Hans Vangheluwe,et al.  Domain-Specific Modelling With Atom3 , 2007, ICSOFT.

[27]  Sandeep Neema,et al.  Modeling methodology for integrated simulation of embedded systems , 2003, TOMC.

[28]  Gabor Karsai,et al.  A UML-based Graph Transformation Approach for Implementing Domain-Specific Model Transformations , 2003 .

[29]  William H. Press,et al.  Numerical recipes in C , 2002 .

[30]  Gabor Karsai,et al.  Composing Domain-Specific Design Environments , 2001, Computer.

[31]  Gabor Karsai,et al.  Smart Dust: communicating with a cubic-millimeter computer , 2001 .

[32]  Michael Tiller,et al.  Introduction to Physical Modeling with Modelica , 2001 .

[33]  Dana Petcu,et al.  Designing an ODE Solving Environment , 2000 .

[34]  M. Otter,et al.  Modelica - A Unified Object-Oriented Language for Physical Systems Modeling - Language Specification , 2000 .

[35]  サイバネットシステム,et al.  MATLAB : high-performance numeric computation and visualization software : エクスターナルインタフェースガイド , 1994 .