Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing

The timescale-invariant recognition of temporal stimulus sequences is vital for many species and poses a challenge for their sensory systems. Here we present a simple mechanistic model to address this computational task, based on recent observations in insects that use rhythmic acoustic communication signals for mate finding. In the model framework, feedforward inhibition leads to burst-like response patterns in one neuron of the circuit. Integrating these responses over a fixed time window by a readout neuron creates a timescale-invariant stimulus representation. Only two additional processing channels, each with a feature detector and a readout neuron, plus one final coincidence detector for all three parallel signal streams, are needed to account for the behavioral data. In contrast to previous solutions to the general time-warp problem, no time delay lines or sophisticated neural architectures are required. Our results suggest a new computational role for feedforward inhibition and underscore the power of parallel signal processing.

[1]  Hans R. Gelderblom,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001 .

[2]  Wade G. Regehr,et al.  Timing and Specificity of Feed-Forward Inhibition within the LGN , 2005, Neuron.

[3]  Gary J. Rose,et al.  Long-term temporal integration in the anuran auditory system , 1998, Nature Neuroscience.

[4]  Inés Samengo,et al.  Spike-timing precision underlies the coding efficiency of auditory receptor neurons. , 2006, Journal of neurophysiology.

[5]  R. Romo,et al.  Neural codes for perceptual discrimination in primary somatosensory cortex , 2005, Nature Neuroscience.

[6]  Biing-Hwang Juang,et al.  Hidden Markov Models for Speech Recognition , 1991 .

[7]  Heiner Römer,et al.  Die Informationsverarbeitung tympanaler Rezeptorelemente vonLocusta migratoria (Acrididae, Orthoptera) , 2004, Journal of comparative physiology.

[8]  J. Benda Single Neuron Dynamics — Models Linking Theory and Experiment , 2002 .

[9]  Li I. Zhang,et al.  Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. , 2004, Journal of neurophysiology.

[10]  E. de Boer,et al.  Auditory Time Constants: A Paradox? , 1985 .

[11]  M. Hauser,et al.  The design of animal communication , 1999 .

[12]  Tim Gollisch,et al.  Time-warp invariant pattern detection with bursting neurons , 2008 .

[13]  B. Ronacher,et al.  Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. II: Processing of temporal patterns of the song of the male , 1991 .

[14]  S. Cruikshank,et al.  Auditory thalamocortical synaptic transmission in vitro. , 2002, Journal of neurophysiology.

[15]  Jan Benda,et al.  The Origin of Adaptation in the Auditory Pathway of Locusts Is Specific to Cell Type and Function , 2009, The Journal of Neuroscience.

[16]  B. Ronacher,et al.  Efficient transformation of an auditory population code in a small sensory system , 2011, Proceedings of the National Academy of Sciences.

[17]  Bernhard Ronacher,et al.  Coding of a sexually dimorphic song feature by auditory interneurons of grasshoppers: the role of leading inhibition , 2001, Journal of Comparative Physiology A.

[18]  I. Nelken,et al.  Processing of complex stimuli and natural scenes in the auditory cortex , 2004, Current Opinion in Neurobiology.

[19]  B. Ronacher,et al.  Auditory interneurones in the metathoracic ganglion of the grasshopper Chorthippus biguttulus. I, Morphological and physiological characterization , 1991 .

[20]  J J Hopfield,et al.  What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Bernhard Ronacher,et al.  Neurophysiological Aspects of Song Pattern Recognition and Sound Localization in Grasshoppers , 1994 .

[22]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[23]  J. Fritz,et al.  Dynamics of Precise Spike Timing in Primary Auditory Cortex , 2004, The Journal of Neuroscience.

[24]  J. H. Casseday,et al.  Timing in the auditory system of the bat. , 1999, Annual review of physiology.

[25]  D. Blumstein Acoustic Communication in Insects and Anurans : Common Problems and Diverse Solutions , 2002 .

[26]  Jan P. Wittmann,et al.  A neural network-based analysis of acoustic courtship signals and female responses in Chorthippus biguttulus grasshoppers , 2011, Journal of Computational Neuroscience.

[27]  Heiner Römer,et al.  Ecological Constraints for Sound Communication: From Grasshoppers to Elephants , 2001 .

[28]  D. Helversen,et al.  Recognition of sex in the acoustic communication of the grasshopper Chorthippus biguttulus (Orthoptera, Acrididae) , 1997, Journal of Comparative Physiology A.

[29]  A. Zador,et al.  Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex , 2005, Neuron.

[30]  Harold H. Zakon,et al.  A “Sample-and-Hold” Pulse-Counting Integrator as a Mechanism for Graded Memory Underlying Sensorimotor Adaptation , 2006, Neuron.

[31]  D. Klatt Linguistic uses of segmental duration in English: acoustic and perceptual evidence. , 1976, The Journal of the Acoustical Society of America.

[32]  Andreas V. M. Herz,et al.  A Universal Model for Spike-Frequency Adaptation , 2003, Neural Computation.

[33]  Bernhard Ronacher,et al.  Routes and stations in the processing of auditory directional information in the CNS of a grasshopper, as revealed by surgical experiments , 1986, Journal of Comparative Physiology A.

[34]  Bernhard Ronacher,et al.  Single auditory neurons rapidly discriminate conspecific communication signals , 2003, Nature Neuroscience.

[35]  Dagmar von Helversen Gesang des Männchens und Lautschema des Weibchens bei der FeldheuschreckeChorthippus biguttulus (Orthoptera, Acrididae) , 1972, Journal of comparative physiology.

[36]  A. Herz,et al.  Input-Driven Components of Spike-Frequency Adaptation Can Be Unmasked In Vivo , 2004, The Journal of Neuroscience.

[37]  R. Port,et al.  Consonant/vowel ratio as a cue for voicing in English , 1982, Perception & psychophysics.

[38]  Felix Creutzig,et al.  Timescale-Invariant Representation of Acoustic Communication Signals by a Bursting Neuron , 2009, The Journal of Neuroscience.

[39]  Felix Creutzig,et al.  Sufficient encoding of dynamical systems , 2008 .

[40]  J J Hopfield,et al.  Transforming neural computations and representing time. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Kodithuwakku Original Paper , 2020 .

[42]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[43]  Bernhard Ronacher,et al.  Filtering of behaviourally relevant temporal parameters of a grasshopper's song by an auditory interneuron , 1988, Journal of Comparative Physiology A.

[44]  Tim Gollisch,et al.  Disentangling Sub-Millisecond Processes within an Auditory Transduction Chain , 2005, PLoS biology.

[45]  Dezhe Z Jin,et al.  Spiking neural network for recognizing spatiotemporal sequences of spikes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.