Potential Vorticity (PV) Thinking in Operations: The Utility of Nonconservation

Abstract The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems characterized by strong latent heat release (LHR). The interpretation of the dynamical influence of LHR is straightforward in the PV framework; LHR can lead to the generation of lower-tropospheric cyclonic PV anomalies. These anomalies can be related to meteorological phenomena including extratropical cyclones and low-level jets (LLJs), which can impact lower-tropospheric moisture transport. The nonconservation of PV in the presence of LHR results in a modification of the PV distribution that can be identified in NWP model output and evaluated through a comparison with observations and high-frequency gridded analyses. This methodology, along with the application of PV-based interpretation, can help forecasters identify aspects of NWP model solutions that are d...

[1]  Ying-Hwa Kuo,et al.  The Integrated Effect of Condensation in Numerical Simulations of Extratropical Cyclogenesis , 1993 .

[2]  L. Bosart,et al.  Baroclinically Induced Tropical Cyclogenesis , 2003 .

[3]  Christopher A. Davis,et al.  Numerical Simulations of the Genesis of Hurricane Diana (1984). Part I: Control Simulation , 2000 .

[4]  Alan K. Betts,et al.  The Betts-Miller Scheme , 1993 .

[5]  Z. Janjic The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes , 1994 .

[6]  Alan J. Thorpe,et al.  The Evolution and Dynamical Role of Reduced Upper-Tropospheric Potential Vorticity in Intensive Observing Period One of FASTEX , 2000 .

[7]  John W. Nielsen-Gammon,et al.  Using Tropopause Maps to Diagnose Midlatitude Weather Systems , 1998 .

[8]  Donald R. Johnson,et al.  The Coupling of Upper and Lower Tropospheric Jet Streaks and Implications for the Development of Severe Convective Storms , 1979 .

[9]  G. Lackmann,et al.  The Sensitivity of Numerical Forecasts to Convective Parameterization: A Case Study of the 17 February 2004 East Coast Cyclone , 2006 .

[10]  Michael E. Baldwin,et al.  Properties of the Convection Scheme in NCEP's Eta Model that Affect Forecast Sounding Interpretation , 2002 .

[11]  R. Plant,et al.  The dynamics of a midlatitude cyclone with very strong latent‐heat release , 2004 .

[12]  R. J. Reed,et al.  A Model-aided Study of the Origin and Evolution of the Anomalously High Potential vorticity in the Inner Region of a Rapidly Deepening Marine Cyclone , 1992 .

[13]  G. Lackmann,et al.  The Effect of Upstream Convection on Downstream Precipitation , 2007 .

[14]  Xiaolei Zou,et al.  Incorporating TOMS Ozone Measurements into the Prediction of the Washington, D.C., Winter Storm during 24–25 January 2000 , 2003 .

[15]  N. Seaman,et al.  A Comparison Study of Convective Parameterization Schemes in a Mesoscale Model , 1997 .

[16]  Louis W. Uccellini,et al.  A model-based diagnostic study of the rapid development phase of the Presidents' Day cyclone , 1988 .

[17]  R. Plant,et al.  On a threefold classification of extratropical cyclogenesis , 2003 .

[18]  Sverre Petterssen,et al.  Weather analysis and forecasting , 1940 .

[19]  C. Davis A Potential-Vorticity Diagnosis of the importance of initial Structure and Condensational Heating in Observed Extratropical Cyclogenesis , 1992 .

[20]  The impact of mesoscale convective‐system potential‐vorticity anomalies on numerical‐weather‐prediction forecasts , 2001 .

[21]  F. Bretherton Critical layer instability in baroclinic flows , 1966 .

[22]  David J. Raymond,et al.  Nonlinear Balance and Potential‐Vorticity Thinking At Large Rossby Number , 1992 .

[23]  J. Gyakum,et al.  An Analysis of Hurricane Opal's Forecast Track Errors Using Quasigeostrophic Potential Vorticity Inversion , 1999 .

[24]  Clifford F. Mass,et al.  IFPS and the Future of the National Weather Service , 2003 .

[25]  Eugeune J. Aubert ON THE RELEASE OF LATENT HEAT AS A FACTOR IN LARGE SCALE ATMOSPHERIC MOTIONS , 1957 .

[26]  L. Bosart,et al.  Postlandfall Tropical Cyclone Reintensification in a Weakly Baroclinic Environment: A Case Study of Hurricane David (September 1979) , 1995 .

[27]  R. Rotunno,et al.  Effects of Moist Convection on Mesoscale Predictability , 2003 .

[28]  Lance F. Bosart Whither the Weather Analysis and Forecasting Process , 2003 .

[29]  J. Michael Fritsch,et al.  Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy , 2004 .

[30]  Chris Snyder,et al.  Mesoscale Predictability of the “Surprise” Snowstorm of 24–25 January 2000 , 2002 .

[31]  Ying-Hwa Kuo,et al.  The ERICA IOP 5 Storm. Part III: Mesoscale Cyclogenesis and Precipitation Parameterization , 1996 .

[32]  John S. Kain,et al.  The Kain–Fritsch Convective Parameterization: An Update , 2004 .

[33]  G. Lackmann Cold-Frontal Potential Vorticity Maxima, the Low-Level Jet, and Moisture Transport in Extratropical Cyclones , 2002 .

[34]  C. Schär,et al.  Low-Level Potential Vorticity and Cyclogenesis to the Lee of the Alps , 1998 .

[35]  J. Gyakum,et al.  Heavy Cold-Season Precipitation in the Northwestern United States: Synoptic Climatology and an Analysis of the Flood of 17-18 January 1986 , 1999 .

[36]  B. Hoskins,et al.  On the use and significance of isentropic potential vorticity maps , 2007 .

[37]  A. G. Forsdyke,et al.  The theory and use of upper air thickness patterns in forecasting , 1950 .

[38]  Melville E. Nicholls,et al.  A Vortical Hot Tower Route to Tropical Cyclogenesis. , 2006 .

[39]  Ronald Gelaro,et al.  Initial Condition Sensitivity and Error Growth in Forecasts of the 25 January 2000 East Coast Snowstorm , 2002 .

[40]  Da‐Lin Zhang,et al.  Interaction of Potential Vorticity Anomalies in Extratropical Cyclogenesis. Part I: Static Piecewise Inversion , 1999 .

[41]  L. Uccellini Processes Contributing to the Rapid Development of Extratropical Cyclones , 1990 .

[42]  M. Danard On the Influence of Released Latent Heat on Cyclone Development , 1964 .

[43]  Charles A. Doswell,et al.  Weather Forecasting by Humans—Heuristics and Decision Making , 2004 .

[44]  J. Molinari An Overview of Cumulus Parameterization in Mesoscale Models , 1993 .

[45]  M. Stoelinga A Potential Vorticity-Based Study of the Role of Diabatic Heating and Friction in a Numerically Simulated Baroclinic Cyclone , 1996 .

[46]  M. Brennan,et al.  The Influence of Incipient Latent Heat Release on the Precipitation Distribution of the 24–25 January 2000 U.S. East Coast Cyclone , 2005 .

[47]  L. Bosart,et al.  The Ohio Valley Wave-Merger Cyclogenesis Event of 25–26 January 1978. Part II: Diagnosis Using Quasigeostrophic Potential Vorticity Inversion , 1996 .

[48]  A. Thorpe Synoptic Scale Disturbances with Circular Symmetry , 1986 .

[49]  L. Bosart,et al.  The March 1993 Superstorm Cyclogenesis: Incipient Phase Synoptic- and Convective-Scale Flow Interaction and Model Performance , 1997 .

[50]  K. Emanuel,et al.  Potential Vorticity Diagnostics of Cyclogenesis , 1991 .

[51]  J. Otkin,et al.  The Rapid Growth and Decay of an Extratropical Cyclone over the Central Pacific Ocean , 2004 .

[52]  John W. Nielsen-Gammon,et al.  The Multiple-Vortex Nature of Tropical Cyclogenesis , 2006 .

[53]  John S. Kain,et al.  Multiscale Convective Overturning in Mesoscale Convective Systems: Reconciling Observations, Simulations, and Theory , 1998 .

[54]  Jonathan E. Martin The Structure and Evolution of a Continental Winter Cyclone. Part I: Frontal Structure and the Occlusion Process , 1998 .

[55]  J. Tuccillo,et al.  Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone , 1987 .

[56]  T. D. Hewson,et al.  NWP Grid Editing at the Met Office , 2005 .

[57]  C. Davis,et al.  The Balanced Dynamical Nature of a Rapidly Intensifying Oceanic Cyclone , 1996 .