Rotation in the NGC 1333 IRAS 4C Outflow

We report molecular line observations of the NGC 1333 IRAS 4C outflow in the Perseus Molecular Cloud with the Atacama Large Millimeter/Submillimeter Array. The CCH and CS emission reveal an outflow cavity structure with clear signatures of rotation with respect to the outflow axis. The rotation is detected from about 120 au up to about 1400 au above the envelope/disk midplane. As the distance to the central source increases, the rotation velocity of the outflow decreases while the outflow radius increases, which gives a flat specific angular momentum distribution along the outflow. The mean specific angular momentum of the outflow is about 100 . On the basis of reasonable assumptions on the outward velocity of the outflow and the protostar mass, we estimate the range of outflow-launching radii to be 5–15 au. Such a launching radius rules out that this outflow is launched as an X-wind, but rather, it is more consistent to be a slow disk wind launched from relatively large radii on the disk. The radius of the centrifugal barrier is roughly estimated, and the role of the centrifugal barrier in the outflow launching is discussed.

[1]  N. Sakai,et al.  Sub-arcsecond Kinematic Structure of the Outflow in the Vicinity of the Protostar in L483 , 2018, The Astrophysical Journal.

[2]  A. Goodman,et al.  Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—1.3 mm Subcompact Data Release , 2018, The Astrophysical Journal Supplement Series.

[3]  N. Sakai,et al.  Chemical Survey toward Young Stellar Objects in the Perseus Molecular Cloud Complex , 2018, The Astrophysical Journal Supplement Series.

[4]  Qizhou Zhang,et al.  A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind? , 2018, 1802.03668.

[5]  A. Gusdorf,et al.  ALMA discovery of a rotating SO/SO2 flow in HH212 - A possible MHD disk wind? , 2017, 1710.01401.

[6]  P. Caselli,et al.  Molecular outflow launched beyond the disk edge , 2017, 1707.01501.

[7]  Qizhou Zhang,et al.  A rotating protostellar jet launched from the innermost disk of HH 212 , 2017, Nature Astronomy.

[8]  M. Honma,et al.  Disk-driven rotating bipolar outflow in Orion Source I , 2017, Nature Astronomy.

[9]  C. Vastel,et al.  Vertical structure of the transition zone from infalling rotating envelope to disc in the Class 0 protostar, IRAS 04368+2557 , 2017, 1703.07931.

[10]  C. Vastel,et al.  L483: Warm Carbon-chain Chemistry Source Harboring Hot Corino Activity , 2017, 1703.03653.

[11]  J. P. Ramsey,et al.  Resolved images of a protostellar outflow driven by an extended disk wind , 2016, Nature.

[12]  C. Vastel,et al.  DISCOVERY OF A HOT CORINO IN THE BOK GLOBULE B335 , 2016, 1610.03942.

[13]  G. Fuller,et al.  Evolutionary status of dense cores in the NGC 1333 IRAS 4 star-forming region , 2016, 1608.07661.

[14]  B. Wang,et al.  OBSERVATION OF A METRIC TYPE N SOLAR RADIO BURST , 2016, 1608.00093.

[15]  N. Sakai,et al.  INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA , 2016, 1605.00340.

[16]  G. Garay,et al.  ALMA CYCLE 1 OBSERVATIONS OF THE HH46/47 MOLECULAR OUTFLOW: STRUCTURE, ENTRAINMENT, AND CORE IMPACT , 2016, 1602.02388.

[17]  Zhi-Yun Li,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY: FIRST LOOK AT RESOLVED CANDIDATE DISKS AROUND CLASS 0 AND I PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.03040.

[18]  Leslie W. Looney,et al.  THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.

[19]  N. Sakai,et al.  GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS , 2015, 1604.08005.

[20]  M. Dunham,et al.  THE SPITZER c2d SURVEY OF LARGE, NEARBY, INTERSTELLAR CLOUDS. XII. THE PERSEUS YSO POPULATION AS OBSERVED WITH IRAC AND MIPS , 2015, 1505.08122.

[21]  L. Loinard,et al.  A SUB-ARCSECOND SURVEY TOWARD CLASS 0 PROTOSTARS IN PERSEUS: SEARCHING FOR SIGNATURES OF PROTOSTELLAR DISKS , 2015, 1503.05189.

[22]  N. Sakai,et al.  A SUBSTELLAR-MASS PROTOSTAR AND ITS OUTFLOW OF IRAS 15398−3359 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATIONS of H2CO AND CCH , 2014, 1410.5945.

[23]  C. Vastel,et al.  A CHEMICAL VIEW OF PROTOSTELLAR-DISK FORMATION IN L1527 , 2014 .

[24]  N. Peretto,et al.  CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION , 2014, 1404.7142.

[25]  C. Vastel,et al.  Change in the chemical composition of infalling gas forming a disk around a protostar , 2014, Nature.

[26]  N. Sakai,et al.  Warm carbon-chain chemistry. , 2013, Chemical reviews.

[27]  S. Corder,et al.  CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333 , 2013, 1307.3558.

[28]  Miju Kang,et al.  ROTATION OF THE NGC 1333 IRAS 4A2 PROTOSTELLAR JET , 2011, 1101.4982.

[29]  Alexander S. Szalay,et al.  REDSHIFT-SPACE ENHANCEMENT OF LINE-OF-SIGHT BARYON ACOUSTIC OSCILLATIONS IN THE SLOAN DIGITAL SKY SURVEY MAIN-GALAXY SAMPLE , 2010, 1011.2481.

[30]  Qizhou Zhang,et al.  ROTATION AND OUTFLOW MOTIONS IN THE VERY LOW-MASS CLASS 0 PROTOSTELLAR SYSTEM HH 211 AT SUBARCSECOND RESOLUTION , 2009, 0905.1747.

[31]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[32]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[33]  S. Sakai,et al.  Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .

[34]  T. Ray,et al.  Investigating the transport of angular momentum from young stellar objects. Do H2 jets from class I , 2008, 0802.1881.

[35]  T. Ray,et al.  Further Indications of Jet Rotation in New Ultraviolet and Optical Hubble Space Telescope STIS Spectra , 2007, astro-ph/0703271.

[36]  S. Cabrit,et al.  Which jet launching mechanism(s) in T Tauri stars , 2006, astro-ph/0604053.

[37]  E. F. Ladd,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005 .

[38]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[39]  A. Abergel,et al.  Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case , 2005, astro-ph/0501339.

[40]  R. Blandford,et al.  Locating the Launching Region of T Tauri Winds: The Case of DG Tauri , 2003, astro-ph/0304127.

[41]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[42]  G. Sandell,et al.  NGC 1333—Protostars, Dust Shells, and Triggered Star Formation , 2000 .