Rotation in the NGC 1333 IRAS 4C Outflow
暂无分享,去创建一个
N. Sakai | C. Ceccarelli | B. Lefloch | S. Yamamoto | T. Sakai | A. Higuchi | Yoshimasa Watanabe | Y. Oya | A. López-Sepulcre | Yichen Zhang | M. Imai
[1] N. Sakai,et al. Sub-arcsecond Kinematic Structure of the Outflow in the Vicinity of the Protostar in L483 , 2018, The Astrophysical Journal.
[2] A. Goodman,et al. Mass Assembly of Stellar Systems and Their Evolution with the SMA (MASSES)—1.3 mm Subcompact Data Release , 2018, The Astrophysical Journal Supplement Series.
[3] N. Sakai,et al. Chemical Survey toward Young Stellar Objects in the Perseus Molecular Cloud Complex , 2018, The Astrophysical Journal Supplement Series.
[4] Qizhou Zhang,et al. A 100 au Wide Bipolar Rotating Shell Emanating from the HH 212 Protostellar Disk: A Disk Wind? , 2018, 1802.03668.
[5] A. Gusdorf,et al. ALMA discovery of a rotating SO/SO2 flow in HH212 - A possible MHD disk wind? , 2017, 1710.01401.
[6] P. Caselli,et al. Molecular outflow launched beyond the disk edge , 2017, 1707.01501.
[7] Qizhou Zhang,et al. A rotating protostellar jet launched from the innermost disk of HH 212 , 2017, Nature Astronomy.
[8] M. Honma,et al. Disk-driven rotating bipolar outflow in Orion Source I , 2017, Nature Astronomy.
[9] C. Vastel,et al. Vertical structure of the transition zone from infalling rotating envelope to disc in the Class 0 protostar, IRAS 04368+2557 , 2017, 1703.07931.
[10] C. Vastel,et al. L483: Warm Carbon-chain Chemistry Source Harboring Hot Corino Activity , 2017, 1703.03653.
[11] J. P. Ramsey,et al. Resolved images of a protostellar outflow driven by an extended disk wind , 2016, Nature.
[12] C. Vastel,et al. DISCOVERY OF A HOT CORINO IN THE BOK GLOBULE B335 , 2016, 1610.03942.
[13] G. Fuller,et al. Evolutionary status of dense cores in the NGC 1333 IRAS 4 star-forming region , 2016, 1608.07661.
[14] B. Wang,et al. OBSERVATION OF A METRIC TYPE N SOLAR RADIO BURST , 2016, 1608.00093.
[15] N. Sakai,et al. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA , 2016, 1605.00340.
[16] G. Garay,et al. ALMA CYCLE 1 OBSERVATIONS OF THE HH46/47 MOLECULAR OUTFLOW: STRUCTURE, ENTRAINMENT, AND CORE IMPACT , 2016, 1602.02388.
[17] Zhi-Yun Li,et al. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY: FIRST LOOK AT RESOLVED CANDIDATE DISKS AROUND CLASS 0 AND I PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.03040.
[18] Leslie W. Looney,et al. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD , 2016, 1601.00692.
[19] N. Sakai,et al. GEOMETRIC AND KINEMATIC STRUCTURE OF THE OUTFLOW/ENVELOPE SYSTEM OF L1527 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATION OF CS , 2015, 1604.08005.
[20] M. Dunham,et al. THE SPITZER c2d SURVEY OF LARGE, NEARBY, INTERSTELLAR CLOUDS. XII. THE PERSEUS YSO POPULATION AS OBSERVED WITH IRAC AND MIPS , 2015, 1505.08122.
[21] L. Loinard,et al. A SUB-ARCSECOND SURVEY TOWARD CLASS 0 PROTOSTARS IN PERSEUS: SEARCHING FOR SIGNATURES OF PROTOSTELLAR DISKS , 2015, 1503.05189.
[22] N. Sakai,et al. A SUBSTELLAR-MASS PROTOSTAR AND ITS OUTFLOW OF IRAS 15398−3359 REVEALED BY SUBARCSECOND-RESOLUTION OBSERVATIONS of H2CO AND CCH , 2014, 1410.5945.
[23] C. Vastel,et al. A CHEMICAL VIEW OF PROTOSTELLAR-DISK FORMATION IN L1527 , 2014 .
[24] N. Peretto,et al. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION , 2014, 1404.7142.
[25] C. Vastel,et al. Change in the chemical composition of infalling gas forming a disk around a protostar , 2014, Nature.
[26] N. Sakai,et al. Warm carbon-chain chemistry. , 2013, Chemical reviews.
[27] S. Corder,et al. CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333 , 2013, 1307.3558.
[28] Miju Kang,et al. ROTATION OF THE NGC 1333 IRAS 4A2 PROTOSTELLAR JET , 2011, 1101.4982.
[29] Alexander S. Szalay,et al. REDSHIFT-SPACE ENHANCEMENT OF LINE-OF-SIGHT BARYON ACOUSTIC OSCILLATIONS IN THE SLOAN DIGITAL SKY SURVEY MAIN-GALAXY SAMPLE , 2010, 1011.2481.
[30] Qizhou Zhang,et al. ROTATION AND OUTFLOW MOTIONS IN THE VERY LOW-MASS CLASS 0 PROTOSTELLAR SYSTEM HH 211 AT SUBARCSECOND RESOLUTION , 2009, 0905.1747.
[31] N. Evans,et al. PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.
[32] P. S. Bunclark,et al. Astronomical Data Analysis Software and Systems , 2008 .
[33] S. Sakai,et al. Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .
[34] T. Ray,et al. Investigating the transport of angular momentum from young stellar objects. Do H2 jets from class I , 2008, 0802.1881.
[35] T. Ray,et al. Further Indications of Jet Rotation in New Ultraviolet and Optical Hubble Space Telescope STIS Spectra , 2007, astro-ph/0703271.
[36] S. Cabrit,et al. Which jet launching mechanism(s) in T Tauri stars , 2006, astro-ph/0604053.
[37] E. F. Ladd,et al. Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005 .
[38] Holger S. P. Müller,et al. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .
[39] A. Abergel,et al. Are PAHs precursors of small hydrocarbons in photo-dissociation regions? The Horsehead case , 2005, astro-ph/0501339.
[40] R. Blandford,et al. Locating the Launching Region of T Tauri Winds: The Case of DG Tauri , 2003, astro-ph/0304127.
[41] Lee G. Mundy,et al. Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.
[42] G. Sandell,et al. NGC 1333—Protostars, Dust Shells, and Triggered Star Formation , 2000 .