Overnight industrial LES for external aerodynamics

Abstract This paper summarizes the efforts carried out over the last year to achieve overnight industrial Large-Eddy Simulation (LES) runs for external car aerodynamics. The solver employed is based on adaptive cartesian blocks, uses explicit timestepping to advance the Navier-Stokes equations describing mildly compressible flows, and scales well to tens of thousands of cores. The capabilities developed to date are tested on a Volkswagen Golf.

[1]  Michael J. Aftosmis,et al.  3D applications of a Cartesian grid Euler method , 1995 .

[2]  Pierre Sagaut,et al.  Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics , 2009, J. Comput. Phys..

[3]  Michael Manhart,et al.  High‐order stable interpolations for immersed boundary methods , 2006 .

[4]  Rainald Löhner,et al.  Towards overcoming the LES crisis , 2019, International Journal of Computational Fluid Dynamics.

[5]  Kazuhiro Nakahashi,et al.  Building-Cube Method for Large-Scale, High Resolution Flow Computations , 2004 .

[6]  Rainald Löhner,et al.  On the achievable speeds of finite difference solvers on CPUs and GPUs. , 2013 .

[7]  M. D. Salas,et al.  Euler calculations for multielement airfoils using Cartesian grids , 1986 .

[8]  Andrew M. Wissink,et al.  Progress in Strand Mesh Generation and Domain Connectivity for Dual-Mesh CFD simulations , 2017 .

[9]  David P. Lockard,et al.  Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications , 2000 .

[10]  Lisandro Dalcin,et al.  A FFT preconditioning technique for the solution of incompressible flow on GPUs , 2013 .

[11]  Kazuhiro Nakahashi,et al.  Building-Cube Method for Flow Problems with Broadband Characteristic Length , 2003 .

[12]  Habib N. Najm,et al.  Using High-Order Methods on Adaptively Refined Block-Structured Meshes: Derivatives, Interpolations, and Filters , 2007, SIAM J. Sci. Comput..

[13]  Elias Balaras,et al.  An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..

[14]  Alice J. Chen An Incompressible 3-D Navier-Stokes Method with Adaptive Hybrid Grids. , 1995 .

[15]  S. Turek,et al.  Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows , 2006 .

[16]  G. Doolen,et al.  Comparison of the Lattice Boltzmann Method and the Artificial Compressibility Method for Navier-Stokes Equations , 2002 .

[17]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[18]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[19]  Rainald Löhner,et al.  Postprocessing‐based interpolation schemes for nested Cartesian finite difference grids of different size , 2018, International Journal for Numerical Methods in Fluids.

[20]  Rainald Löhner,et al.  Comparison of Lattice-Boltzmann and Finite Difference Solvers , 2014 .

[21]  Bradley Duncan,et al.  Validation of Lattice-Boltzmann Aerodynamics Simulation for Vehicle Lift Prediction , 2010 .

[22]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[23]  Rainald Löhner,et al.  On Interpolation Schemes for Nested Cartesian Finite Difference Grids of Different Size , 2018 .

[24]  E. Balaras Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations , 2004 .

[25]  Florian Schornbaum Studienarbeit Hierarchical Hash Grids for Coarse Collision Detection , 2009 .

[26]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[27]  E. Balaras,et al.  A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids , 2003 .

[28]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[29]  F. Sotiropoulos,et al.  A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies , 2005 .

[30]  M Cerrolaza,et al.  Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice-Boltzmann methods. , 1998, Journal of biomechanics.

[31]  Jeffrey A. F. Hittinger,et al.  Block-structured adaptive mesh refinement algorithms for Vlasov simulation , 2011, J. Comput. Phys..

[32]  Rainald Löhner,et al.  Improved error and work estimates for high‐order elements , 2013 .

[33]  Wei Shyy,et al.  The Lattice Boltzmann Method for Flapping Wing Aerodynamics , 2010 .

[34]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[35]  Phillip Colella,et al.  A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .

[36]  Gediminas Adomavicius,et al.  A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries , 2000 .

[37]  W. Shyy,et al.  Regular Article: An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries , 1999 .

[38]  Michael Junk,et al.  A finite difference interpretation of the lattice Boltzmann method , 2001 .