Metagenomic characterization of antibiotic resistance genes in Antarctic soils.

[1]  Tiangang Luan,et al.  Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. , 2018, Water research.

[2]  E. Kristiansson,et al.  Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. , 2018, Environment international.

[3]  Y. van de Peer,et al.  A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils , 2018, Microbiome.

[4]  R. Pantůček,et al.  Staphylococcus edaphicus sp. nov., Isolated in Antarctica, Harbors the mecC Gene and Genomic Islands with a Suspected Role in Adaptation to Extreme Environments , 2017, Applied and Environmental Microbiology.

[5]  Laura J V Piddock,et al.  Wastewater for Urban Agriculture: A Significant Factor in Dissemination of Antibiotic Resistance. , 2017, Environmental science & technology.

[6]  Robert D. Stedtfeld,et al.  Influence of Soil Characteristics and Proximity to Antarctic Research Stations on Abundance of Antibiotic Resistance Genes in Soils. , 2016, Environmental science & technology.

[7]  C. King,et al.  The environmental impact of sewage and wastewater outfalls in Antarctica: An example from Davis station, East Antarctica. , 2016, Water research.

[8]  Raymond Lo,et al.  CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database , 2016, Nucleic Acids Res..

[9]  H. Blanck,et al.  Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. , 2016, The Science of the total environment.

[10]  Tong Zhang,et al.  Metagenomic Analysis Revealing Antibiotic Resistance Genes (ARGs) and Their Genetic Compartments in the Tibetan Environment. , 2016, Environmental science & technology.

[11]  K. Láska,et al.  Imported anthropogenic bacteria may survive the Antarctic winter and introduce new genes into local bacterial communities , 2016 .

[12]  M. Tutino,et al.  Large-scale biofilm cultivation of Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 for physiologic studies and drug discovery , 2016, Extremophiles.

[13]  D. Cowan,et al.  Protection of Antarctic microbial communities – ‘out of sight, out of mind’ , 2015, Front. Microbiol..

[14]  Xiang-dong Li,et al.  The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China. , 2015, Journal of hazardous materials.

[15]  C. Merlin,et al.  Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. , 2014, The Science of the total environment.

[16]  Molly K. Gibson,et al.  Bacterial phylogeny structures soil resistomes across habitats , 2014, Nature.

[17]  Tong Zhang,et al.  Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments. , 2013, Environmental science & technology.

[18]  Tong Zhang,et al.  Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. , 2013, Water research.

[19]  Bing Li,et al.  Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. , 2013, Environmental science & technology.

[20]  M. Mckenna,et al.  Antibiotic resistance: The last resort , 2013, Nature.

[21]  Akinori Yamada,et al.  Distribution of antibiotic resistance genes in glacier environments. , 2013, Environmental microbiology reports.

[22]  Lisa M. Durso,et al.  Distribution and Quantification of Antibiotic Resistant Genes and Bacteria across Agricultural and Non-Agricultural Metagenomes , 2012, PloS one.

[23]  Otto X. Cordero,et al.  Ecological Populations of Bacteria Act as Socially Cohesive Units of Antibiotic Production and Resistance , 2012, Science.

[24]  G. Dantas,et al.  The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens , 2012, Science.

[25]  J. Mahillon,et al.  High-Salt Stress Conditions Increase the pAW63 Transfer Frequency in Bacillus thuringiensis , 2012, Applied and Environmental Microbiology.

[26]  H. Musto,et al.  Antarctic DNA moving forward: genomic plasticity and biotechnological potential. , 2012, FEMS microbiology letters.

[27]  Andrew C. Pawlowski,et al.  Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome , 2012, PloS one.

[28]  K. Hong,et al.  Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production , 2012, World journal of microbiology & biotechnology.

[29]  G. B. Golding,et al.  Antibiotic resistance is ancient , 2011, Nature.

[30]  A. Pruden,et al.  Effect of various sludge digestion conditions on sulfonamide, macrolide, and tetracycline resistance genes and class I integrons. , 2011, Environmental science & technology.

[31]  Siu-Ming Yiu,et al.  IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler , 2010, RECOMB.

[32]  Heather K. Allen,et al.  Call of the wild: antibiotic resistance genes in natural environments , 2010, Nature Reviews Microbiology.

[33]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[34]  S. Mobashery,et al.  An antibiotic-resistance enzyme from a deep-sea bacterium. , 2010, Journal of the American Chemical Society.

[35]  D. Livermore Has the era of untreatable infections arrived? , 2009, The Journal of antimicrobial chemotherapy.

[36]  G. Church,et al.  Functional Characterization of the Antibiotic Resistance Reservoir in the Human Microflora , 2009, Science.

[37]  António Correia,et al.  INTEGRALL: a database and search engine for integrons, integrases and gene cassettes , 2009, Bioinform..

[38]  E. Gotuzzo,et al.  Antibiotic resistance in a very remote Amazonas community. , 2009, International journal of antimicrobial agents.

[39]  M. Day,et al.  Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. , 2009, Canadian journal of microbiology.

[40]  Tong Zhang,et al.  Antibiotic resistance genes in water environment , 2009, Applied Microbiology and Biotechnology.

[41]  R. H. Baltz Renaissance in antibacterial discovery from actinomycetes. , 2008, Current opinion in pharmacology.

[42]  R. Stepanauskas,et al.  Influence of industrial contamination on mobile genetic elements: class 1 integron abundance and gene cassette structure in aquatic bacterial communities , 2008, The ISME Journal.

[43]  Alexander F. Auch,et al.  Access the most recent version at doi: 10.1101/gr.5969107 References Open Access , 2007 .

[44]  Gerard D. Wright The antibiotic resistome: the nexus of chemical and genetic diversity , 2007, Nature Reviews Microbiology.

[45]  R. Fish,et al.  The last resort? , 2005 .

[46]  A. May,et al.  Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-L-arabinose and polymyxin resistance. , 2004, Biochemistry.

[47]  C. Nathan Antibiotics at the crossroads , 2004, Nature.

[48]  D. Mengin-Lecreulx,et al.  The bacA Gene of Escherichia coli Encodes an Undecaprenyl Pyrophosphate Phosphatase Activity* , 2004, Journal of Biological Chemistry.

[49]  L. Cartee,et al.  Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics. , 2004, Current medicinal chemistry.

[50]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[51]  R. Wenzel,et al.  Managing antibiotic resistance. , 2000, The New England journal of medicine.

[52]  G. Weinstock,et al.  Characterization of Dihydrofolate Reductase Genes from Trimethoprim-Susceptible and Trimethoprim-Resistant Strains ofEnterococcus faecalis , 1999, Antimicrobial Agents and Chemotherapy.

[53]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[54]  S. W. Li,et al.  Plasmid Incidence in Bacteria from Deep Subsurface Sediments , 1988, Applied and environmental microbiology.

[55]  N. Datta,et al.  Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era , 1983, Nature.

[56]  C. Davis,et al.  The evolution of r factor. A study of a "preantibiotic" community in Borneo. , 1970, The New England journal of medicine.

[57]  D. Stekel,et al.  Metal Resistance and Its Association With Antibiotic Resistance. , 2017, Advances in microbial physiology.

[58]  Tiangang Luan,et al.  Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. , 2017, Environmental pollution.

[59]  U. Roy,et al.  Antifungal activity of Arctic and Antarctic bacteria isolates , 2010, Polar Biology.

[60]  T. Gootz The global problem of antibiotic resistance. , 2010, Critical reviews in immunology.